max_flow.h 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// An implementation of a push-relabel algorithm for the max flow problem.
//
// In the following, we consider a graph G = (V,E,s,t) where V denotes the set
// of nodes (vertices) in the graph, E denotes the set of arcs (edges). s and t
// denote distinguished nodes in G called source and target. n = |V| denotes the
// number of nodes in the graph, and m = |E| denotes the number of arcs in the
// graph.
//
// Each arc (v,w) is associated a capacity c(v,w).
//
// A flow is a function from E to R such that:
//
//  a) f(v,w) <= c(v,w) for all (v,w) in E (capacity constraint.)
//
//  b) f(v,w) = -f(w,v) for all (v,w) in E (flow antisymmetry constraint.)
//
//  c) sum on v f(v,w) = 0  (flow conservation.)
//
// The goal of this algorithm is to find the maximum flow from s to t, i.e.
// for example to maximize sum v f(s,v).
//
// The starting reference for this class of algorithms is:
// A.V. Goldberg and R.E. Tarjan. A new approach to the maximum flow problem.
// ACM Symposium on Theory of Computing, pp. 136-146.
// http://portal.acm.org/citation.cfm?id=12144.
//
// The basic idea of the algorithm is to handle preflows instead of flows,
// and to refine preflows until a maximum flow is obtained.
// A preflow is like a flow, except that the inflow can be larger than the
// outflow. If it is the case at a given node v, it is said that there is an
// excess at node v, and inflow = outflow + excess.
//
// More formally, a preflow is a function f such that:
//
// 1) f(v,w) <= c(v,w) for all (v,w) in E  (capacity constraint). c(v,w)  is a
//    value representing the maximum capacity for arc (v,w).
//
// 2) f(v,w) = -f(w,v) for all (v,w) in E (flow antisymmetry constraint)
//
// 3) excess(v) = sum on u f(u,v) >= 0 is the excess at node v, the
//    algebraic sum of all the incoming preflows at this node.
//
// Each node has an associated "height", in addition to its excess. The
// height of the source is defined to be equal to n, and cannot change. The
// height of the target is defined to be zero, and cannot change either. The
// height of all the other nodes is initialized at zero and is updated during
// the algorithm (see below). For those who want to know the details, the height
// of a node, corresponds to a reduced cost, and this enables one to prove that
// the algorithm actually computes the max flow. Note that the height of a node
// can be initialized to the distance to the target node in terms of number of
// nodes. This has not been tried in this implementation.
//
// A node v is said to be *active* if excess(v) > 0.
//
// In this case the following operations can be applied to it:
//
// - if there are *admissible* incident arcs, i.e. arcs which are not saturated,
//   and whose head's height is lower than the height of the active node
//   considered, a PushFlow operation can be applied. It consists in sending as
//   much flow as both the excess at the node and the capacity of the arc
//   permit.
// - if there are no admissible arcs, the active node considered is relabeled,
//   i.e. its height is increased to 1 + the minimum height of its neighboring
//   nodes on admissible arcs.
// This is implemented in Discharge, which itself calls PushFlow and Relabel.
//
// Before running Discharge, it is necessary to initialize the algorithm with a
// preflow. This is done in InitializePreflow, which saturates all the arcs
// leaving the source node, and sets the excess at the heads of those arcs
// accordingly.
//
// The algorithm terminates when there are no remaining active nodes, i.e. all
// the excesses at all nodes are equal to zero. In this case, a maximum flow is
// obtained.
//
// The complexity of this algorithm depends amongst other things on the choice
// of the next active node. It has been shown, for example in:
// L. Tuncel, "On the Complexity of Preflow-Push Algorithms for Maximum-Flow
// Problems", Algorithmica 11(4): 353-359 (1994).
// and
// J. Cheriyan and K. Mehlhorn, "An analysis of the highest-level selection rule
// in the preflow-push max-flow algorithm", Information processing letters,
// 69(5):239-242 (1999).
// http://www.math.uwaterloo.ca/~jcheriya/PS_files/me3.0.ps
//
// ...that choosing the active node with the highest level yields a
// complexity of O(n^2 * sqrt(m)).
//
// TODO(user): implement the above active node choice rule.
//
// This has been validated experimentally in:
// R.K. Ahuja, M. Kodialam, A.K. Mishra, and J.B. Orlin, "Computational
// Investigations of Maximum Flow Algorithms", EJOR 97:509-542(1997).
// http://jorlin.scripts.mit.edu/docs/publications/58-comput%20investigations%20of.pdf.
//
//
// TODO(user): an alternative would be to evaluate:
// A.V. Goldberg, "The Partial Augment-Relabel Algorithm for the Maximum Flow
// Problem.” In Proceedings of Algorithms ESA, LNCS 5193:466-477, Springer 2008.
// http://www.springerlink.com/index/5535k2j1mt646338.pdf
//
// An interesting general reference on network flows is:
// R. K. Ahuja, T. L. Magnanti, J. B. Orlin, "Network Flows: Theory, Algorithms,
// and Applications," Prentice Hall, 1993, ISBN: 978-0136175490,
// http://www.amazon.com/dp/013617549X
//
// Keywords: Push-relabel, max-flow, network, graph, Goldberg, Tarjan, Dinic,
//           Dinitz.

#ifndef OR_TOOLS_GRAPH_MAX_FLOW_H_
#define OR_TOOLS_GRAPH_MAX_FLOW_H_

#include <algorithm>
#include <memory>
#include <string>
#include <vector>

#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
#include "ortools/graph/ebert_graph.h"
#include "ortools/graph/flow_problem.pb.h"
#include "ortools/graph/graph.h"
#include "ortools/util/stats.h"
#include "ortools/util/zvector.h"

namespace operations_research {

// Forward declaration.
template <typename Graph>
class GenericMaxFlow;

// A simple and efficient max-cost flow interface. This is as fast as
// GenericMaxFlow<ReverseArcStaticGraph>, which is the fastest, but uses
// more memory in order to hide the somewhat involved construction of the
// static graph.
//
// TODO(user): If the need arises, extend this interface to support warm start.
class SimpleMaxFlow {
 public:
  // The constructor takes no size.
  // New node indices will be created lazily by AddArcWithCapacity().
  SimpleMaxFlow();

  // Adds a directed arc with the given capacity from tail to head.
  // * Node indices and capacity must be non-negative (>= 0).
  // * Self-looping and duplicate arcs are supported.
  // * After the method finishes, NumArcs() == the returned ArcIndex + 1.
  ArcIndex AddArcWithCapacity(NodeIndex tail, NodeIndex head,
                              FlowQuantity capacity);

  // Returns the current number of nodes. This is one more than the largest
  // node index seen so far in AddArcWithCapacity().
  NodeIndex NumNodes() const;

  // Returns the current number of arcs in the graph.
  ArcIndex NumArcs() const;

  // Returns user-provided data.
  // The implementation will crash if "arc" is not in [0, NumArcs()).
  NodeIndex Tail(ArcIndex arc) const;
  NodeIndex Head(ArcIndex arc) const;
  FlowQuantity Capacity(ArcIndex arc) const;

  // Solves the problem (finds the maximum flow from the given source to the
  // given sink), and returns the problem status.
  enum Status {
    // Solve() was called and found an optimal solution. Note that OptimalFlow()
    // may be 0 which means that the sink is not reachable from the source.
    OPTIMAL,
    // There is a flow > std::numeric_limits<FlowQuantity>::max(). Note that in
    // this case, the class will contain a solution with a flow reaching that
    // bound.
    //
    // TODO(user): rename POSSIBLE_OVERFLOW to INT_OVERFLOW and modify our
    // clients.
    POSSIBLE_OVERFLOW,
    // The input is inconsistent (bad tail/head/capacity values).
    BAD_INPUT,
    // This should not happen. There was an error in our code (i.e. file a bug).
    BAD_RESULT
  };
  Status Solve(NodeIndex source, NodeIndex sink);

  // Returns the maximum flow we can send from the source to the sink in the
  // last OPTIMAL Solve() context.
  FlowQuantity OptimalFlow() const;

  // Returns the flow on the given arc in the last OPTIMAL Solve() context.
  //
  // Note: It is possible that there is more than one optimal solution. The
  // algorithm is deterministic so it will always return the same solution for
  // a given problem. However, there is no guarantee of this from one code
  // version to the next (but the code does not change often).
  FlowQuantity Flow(ArcIndex arc) const;

  // Returns the nodes reachable from the source by non-saturated arcs (.i.e.
  // arc with Flow(arc) < Capacity(arc)), the outgoing arcs of this set form a
  // minimum cut. This works only if Solve() returned OPTIMAL.
  void GetSourceSideMinCut(std::vector<NodeIndex>* result);

  // Returns the nodes that can reach the sink by non-saturated arcs, the
  // outgoing arcs of this set form a minimum cut. Note that if this is the
  // complement set of GetNodeReachableFromSource(), then the min-cut is unique.
  // This works only if Solve() returned OPTIMAL.
  void GetSinkSideMinCut(std::vector<NodeIndex>* result);

  // Creates the protocol buffer representation of the problem used by the last
  // Solve() call. This is mainly useful for debugging.
  FlowModel CreateFlowModelOfLastSolve();

  // Change the capacity of an arc.
  // WARNING: This looks like it enables incremental solves, but as of 2018-02,
  // the next Solve() will restart from scratch anyway.
  // TODO(user): Support incrementality in the max flow implementation.
  void SetArcCapacity(ArcIndex arc, FlowQuantity capacity);

 private:
  NodeIndex num_nodes_;
  std::vector<NodeIndex> arc_tail_;
  std::vector<NodeIndex> arc_head_;
  std::vector<FlowQuantity> arc_capacity_;
  std::vector<ArcIndex> arc_permutation_;
  std::vector<FlowQuantity> arc_flow_;
  FlowQuantity optimal_flow_;

  // Note that we cannot free the graph before we stop using the max-flow
  // instance that uses it.
  typedef ::util::ReverseArcStaticGraph<NodeIndex, ArcIndex> Graph;
  std::unique_ptr<Graph> underlying_graph_;
  std::unique_ptr<GenericMaxFlow<Graph> > underlying_max_flow_;

  DISALLOW_COPY_AND_ASSIGN(SimpleMaxFlow);
};

// Specific but efficient priority queue implementation. The priority type must
// be an integer. The queue allows to retrieve the element with highest priority
// but only allows pushes with a priority greater or equal to the highest
// priority in the queue minus one. All operations are in O(1) and the memory is
// in O(num elements in the queue). Elements with the same priority are
// retrieved with LIFO order.
//
// Note(user): As far as I know, this is an original idea and is the only code
// that use this in the Maximum Flow context. Papers usually refer to an
// height-indexed array of simple linked lists of active node with the same
// height. Even worse, sometimes they use double-linked list to allow arbitrary
// height update in order to detect missing height (used for the Gap heuristic).
// But this can actually be implemented a lot more efficiently by just
// maintaining the height distribution of all the node in the graph.
template <typename Element, typename IntegerPriority>
class PriorityQueueWithRestrictedPush {
 public:
  PriorityQueueWithRestrictedPush() : even_queue_(), odd_queue_() {}

  // Is the queue empty?
  bool IsEmpty() const;

  // Clears the queue.
  void Clear();

  // Push a new element in the queue. Its priority must be greater or equal to
  // the highest priority present in the queue, minus one. This condition is
  // DCHECKed, and violating it yields erroneous queue behavior in NDEBUG mode.
  void Push(Element element, IntegerPriority priority);

  // Returns the element with highest priority and remove it from the queue.
  // IsEmpty() must be false, this condition is DCHECKed.
  Element Pop();

 private:
  // Helper function to get the last element of a vector and pop it.
  Element PopBack(std::vector<std::pair<Element, IntegerPriority> >* queue);

  // This is the heart of the algorithm. basically we split the elements by
  // parity of their priority and the precondition on the Push() ensures that
  // both vectors are always sorted by increasing priority.
  std::vector<std::pair<Element, IntegerPriority> > even_queue_;
  std::vector<std::pair<Element, IntegerPriority> > odd_queue_;

  DISALLOW_COPY_AND_ASSIGN(PriorityQueueWithRestrictedPush);
};

// We want an enum for the Status of a max flow run, and we want this
// enum to be scoped under GenericMaxFlow<>. Unfortunately, swig
// doesn't handle templated enums very well, so we need a base,
// untemplated class to hold it.
class MaxFlowStatusClass {
 public:
  enum Status {
    NOT_SOLVED,    // The problem was not solved, or its data were edited.
    OPTIMAL,       // Solve() was called and found an optimal solution.
    INT_OVERFLOW,  // There is a feasible flow > max possible flow.
    BAD_INPUT,     // The input is inconsistent.
    BAD_RESULT     // There was an error.
  };
};

// Generic MaxFlow (there is a default MaxFlow specialization defined below)
// that works with StarGraph and all the reverse arc graphs from graph.h, see
// the end of max_flow.cc for the exact types this class is compiled for.
template <typename Graph>
class GenericMaxFlow : public MaxFlowStatusClass {
 public:
  typedef typename Graph::NodeIndex NodeIndex;
  typedef typename Graph::ArcIndex ArcIndex;
  typedef typename Graph::OutgoingArcIterator OutgoingArcIterator;
  typedef typename Graph::OutgoingOrOppositeIncomingArcIterator
      OutgoingOrOppositeIncomingArcIterator;
  typedef typename Graph::IncomingArcIterator IncomingArcIterator;
  typedef ZVector<ArcIndex> ArcIndexArray;

  // The height of a node never excess 2 times the number of node, so we
  // use the same type as a Node index.
  typedef NodeIndex NodeHeight;
  typedef ZVector<NodeHeight> NodeHeightArray;

  // Initialize a MaxFlow instance on the given graph. The graph does not need
  // to be fully built yet, but its capacity reservation are used to initialize
  // the memory of this class. source and sink must also be valid node of
  // graph.
  GenericMaxFlow(const Graph* graph, NodeIndex source, NodeIndex sink);
  virtual ~GenericMaxFlow() {}

  // Returns the graph associated to the current object.
  const Graph* graph() const { return graph_; }

  // Returns the status of last call to Solve(). NOT_SOLVED is returned if
  // Solve() has never been called or if the problem has been modified in such a
  // way that the previous solution becomes invalid.
  Status status() const { return status_; }

  // Returns the index of the node corresponding to the source of the network.
  NodeIndex GetSourceNodeIndex() const { return source_; }

  // Returns the index of the node corresponding to the sink of the network.
  NodeIndex GetSinkNodeIndex() const { return sink_; }

  // Sets the capacity for arc to new_capacity.
  void SetArcCapacity(ArcIndex arc, FlowQuantity new_capacity);

  // Sets the flow for arc.
  void SetArcFlow(ArcIndex arc, FlowQuantity new_flow);

  // Returns true if a maximum flow was solved.
  bool Solve();

  // Returns the total flow found by the algorithm.
  FlowQuantity GetOptimalFlow() const { return node_excess_[sink_]; }

  // Returns the flow on arc using the equations given in the comment on
  // residual_arc_capacity_.
  FlowQuantity Flow(ArcIndex arc) const {
    if (IsArcDirect(arc)) {
      return residual_arc_capacity_[Opposite(arc)];
    } else {
      return -residual_arc_capacity_[arc];
    }
  }

  // Returns the capacity of arc using the equations given in the comment on
  // residual_arc_capacity_.
  FlowQuantity Capacity(ArcIndex arc) const {
    if (IsArcDirect(arc)) {
      return residual_arc_capacity_[arc] +
             residual_arc_capacity_[Opposite(arc)];
    } else {
      return 0;
    }
  }

  // Returns the nodes reachable from the source in the residual graph, the
  // outgoing arcs of this set form a minimum cut.
  void GetSourceSideMinCut(std::vector<NodeIndex>* result);

  // Returns the nodes that can reach the sink in the residual graph, the
  // outgoing arcs of this set form a minimum cut. Note that if this is the
  // complement of GetNodeReachableFromSource(), then the min-cut is unique.
  //
  // TODO(user): In the two-phases algorithm, we can get this minimum cut
  // without doing the second phase. Add an option for this if there is a need
  // to, note that the second phase is pretty fast so the gain will be small.
  void GetSinkSideMinCut(std::vector<NodeIndex>* result);

  // Checks the consistency of the input, i.e. that capacities on the arcs are
  // non-negative or null.
  bool CheckInputConsistency() const;

  // Checks whether the result is valid, i.e. that node excesses are all equal
  // to zero (we have a flow) and that residual capacities are all non-negative
  // or zero.
  bool CheckResult() const;

  // Returns true if there exists a path from the source to the sink with
  // remaining capacity. This allows us to easily check at the end that the flow
  // we computed is indeed optimal (provided that all the conditions tested by
  // CheckResult() also hold).
  bool AugmentingPathExists() const;

  // Sets the different algorithm options. All default to true.
  // See the corresponding variable declaration below for more details.
  void SetUseGlobalUpdate(bool value) {
    use_global_update_ = value;
    if (!use_global_update_) process_node_by_height_ = false;
  }
  void SetUseTwoPhaseAlgorithm(bool value) { use_two_phase_algorithm_ = value; }
  void SetCheckInput(bool value) { check_input_ = value; }
  void SetCheckResult(bool value) { check_result_ = value; }
  void ProcessNodeByHeight(bool value) {
    process_node_by_height_ = value && use_global_update_;
  }

  // Returns the protocol buffer representation of the current problem.
  FlowModel CreateFlowModel();

 protected:
  // Returns true if arc is admissible.
  bool IsAdmissible(ArcIndex arc) const {
    return residual_arc_capacity_[arc] > 0 &&
           node_potential_[Tail(arc)] == node_potential_[Head(arc)] + 1;
  }

  // Returns true if node is active, i.e. if its excess is positive and it
  // is neither the source or the sink of the graph.
  bool IsActive(NodeIndex node) const {
    return (node != source_) && (node != sink_) && (node_excess_[node] > 0);
  }

  // Sets the capacity of arc to 'capacity' and clears the flow on arc.
  void SetCapacityAndClearFlow(ArcIndex arc, FlowQuantity capacity) {
    residual_arc_capacity_.Set(arc, capacity);
    residual_arc_capacity_.Set(Opposite(arc), 0);
  }

  // Returns true if a precondition for Relabel is met, i.e. the outgoing arcs
  // of node are all either saturated or the heights of their heads are greater
  // or equal to the height of node.
  bool CheckRelabelPrecondition(NodeIndex node) const;

  // Returns context concatenated with information about arc
  // in a human-friendly way.
  std::string DebugString(const std::string& context, ArcIndex arc) const;

  // Initializes the container active_nodes_.
  void InitializeActiveNodeContainer();

  // Get the first element from the active node container.
  NodeIndex GetAndRemoveFirstActiveNode() {
    if (process_node_by_height_) return active_node_by_height_.Pop();
    const NodeIndex node = active_nodes_.back();
    active_nodes_.pop_back();
    return node;
  }

  // Push element to the active node container.
  void PushActiveNode(const NodeIndex& node) {
    if (process_node_by_height_) {
      active_node_by_height_.Push(node, node_potential_[node]);
    } else {
      active_nodes_.push_back(node);
    }
  }

  // Check the emptiness of the container.
  bool IsEmptyActiveNodeContainer() {
    if (process_node_by_height_) {
      return active_node_by_height_.IsEmpty();
    } else {
      return active_nodes_.empty();
    }
  }

  // Performs optimization step.
  void Refine();
  void RefineWithGlobalUpdate();

  // Discharges an active node node by saturating its admissible adjacent arcs,
  // if any, and by relabelling it when it becomes inactive.
  void Discharge(NodeIndex node);

  // Initializes the preflow to a state that enables to run Refine.
  void InitializePreflow();

  // Clears the flow excess at each node by pushing the flow back to the source:
  // - Do a depth-first search from the source in the direct graph to cancel
  //   flow cycles.
  // - Then, return flow excess along the depth-first search tree (by pushing
  //   the flow in the reverse dfs topological order).
  // The theoretical complexity is O(mn), but it is a lot faster in practice.
  void PushFlowExcessBackToSource();

  // Computes the best possible node potential given the current flow using a
  // reverse breadth-first search from the sink in the reverse residual graph.
  // This is an implementation of the global update heuristic mentioned in many
  // max-flow papers. See for instance: B.V. Cherkassky, A.V. Goldberg, "On
  // implementing push-relabel methods for the maximum flow problem",
  // Algorithmica, 19:390-410, 1997.
  // ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/94/1523/CS-TR-94-1523.pdf
  void GlobalUpdate();

  // Tries to saturate all the outgoing arcs from the source that can reach the
  // sink. Most of the time, we can do that in one go, except when more flow
  // than kMaxFlowQuantity can be pushed out of the source in which case we
  // have to be careful. Returns true if some flow was pushed.
  bool SaturateOutgoingArcsFromSource();

  // Pushes flow on arc,  i.e. consumes flow on residual_arc_capacity_[arc],
  // and consumes -flow on residual_arc_capacity_[Opposite(arc)]. Updates
  // node_excess_ at the tail and head of arc accordingly.
  void PushFlow(FlowQuantity flow, ArcIndex arc);

  // Relabels a node, i.e. increases its height by the minimum necessary amount.
  // This version of Relabel is relaxed in a way such that if an admissible arc
  // exists at the current node height, then the node is not relabeled. This
  // enables us to deal with wrong values of first_admissible_arc_[node] when
  // updating it is too costly.
  void Relabel(NodeIndex node);

  // Handy member functions to make the code more compact.
  NodeIndex Head(ArcIndex arc) const { return graph_->Head(arc); }
  NodeIndex Tail(ArcIndex arc) const { return graph_->Tail(arc); }
  ArcIndex Opposite(ArcIndex arc) const;
  bool IsArcDirect(ArcIndex arc) const;
  bool IsArcValid(ArcIndex arc) const;

  // Returns the set of nodes reachable from start in the residual graph or in
  // the reverse residual graph (if reverse is true).
  template <bool reverse>
  void ComputeReachableNodes(NodeIndex start, std::vector<NodeIndex>* result);

  // Maximum manageable flow.
  static const FlowQuantity kMaxFlowQuantity;

  // A pointer to the graph passed as argument.
  const Graph* graph_;

  // An array representing the excess for each node in graph_.
  QuantityArray node_excess_;

  // An array representing the height function for each node in graph_. For a
  // given node, this is a lower bound on the shortest path length from this
  // node to the sink in the residual network. The height of a node always goes
  // up during the course of a Solve().
  //
  // Since initially we saturate all the outgoing arcs of the source, we can
  // never reach the sink from the source in the residual graph. Initially we
  // set the height of the source to n (the number of node of the graph) and it
  // never changes. If a node as an height >= n, then this node can't reach the
  // sink and its height minus n is a lower bound on the shortest path length
  // from this node to the source in the residual graph.
  NodeHeightArray node_potential_;

  // An array representing the residual_capacity for each arc in graph_.
  // Residual capacities enable one to represent the capacity and flow for all
  // arcs in the graph in the following manner.
  // For all arc, residual_arc_capacity_[arc] = capacity[arc] - flow[arc]
  // Moreover, for reverse arcs, capacity[arc] = 0 by definition,
  // Also flow[Opposite(arc)] = -flow[arc] by definition.
  // Therefore:
  // - for a direct arc:
  //    flow[arc] = 0 - flow[Opposite(arc)]
  //              = capacity[Opposite(arc)] - flow[Opposite(arc)]
  //              = residual_arc_capacity_[Opposite(arc)]
  // - for a reverse arc:
  //    flow[arc] = -residual_arc_capacity_[arc]
  // Using these facts enables one to only maintain residual_arc_capacity_,
  // instead of both capacity and flow, for each direct and indirect arc. This
  // reduces the amount of memory for this information by a factor 2.
  QuantityArray residual_arc_capacity_;

  // An array representing the first admissible arc for each node in graph_.
  ArcIndexArray first_admissible_arc_;

  // A stack used for managing active nodes in the algorithm.
  // Note that the papers cited above recommend the use of a queue, but
  // benchmarking so far has not proved it is better. In particular, processing
  // nodes in LIFO order has better cache locality.
  std::vector<NodeIndex> active_nodes_;

  // A priority queue used for managing active nodes in the algorithm. It allows
  // to select the active node with highest height before each Discharge().
  // Moreover, since all pushes from this node will be to nodes with height
  // greater or equal to the initial discharged node height minus one, the
  // PriorityQueueWithRestrictedPush is a perfect fit.
  PriorityQueueWithRestrictedPush<NodeIndex, NodeHeight> active_node_by_height_;

  // The index of the source node in graph_.
  NodeIndex source_;

  // The index of the sink node in graph_.
  NodeIndex sink_;

  // The status of the problem.
  Status status_;

  // BFS queue used by the GlobalUpdate() function. We do not use a C++ queue
  // because we need access to the vector for different optimizations.
  std::vector<bool> node_in_bfs_queue_;
  std::vector<NodeIndex> bfs_queue_;

  // Whether or not to use GlobalUpdate().
  bool use_global_update_;

  // Whether or not we use a two-phase algorithm:
  // 1/ Only deal with nodes that can reach the sink. At the end we know the
  //    value of the maximum flow and we have a min-cut.
  // 2/ Call PushFlowExcessBackToSource() to obtain a max-flow. This is usually
  //    a lot faster than the first phase.
  bool use_two_phase_algorithm_;

  // Whether or not we use the PriorityQueueWithRestrictedPush to process the
  // active nodes rather than a simple queue. This can only be true if
  // use_global_update_ is true.
  //
  // Note(user): using a template will be slightly faster, but since we test
  // this in a non-critical path, this only has a minor impact.
  bool process_node_by_height_;

  // Whether or not we check the input, this is a small price to pay for
  // robustness. Disable only if you know the input is valid because an invalid
  // input can cause the algorithm to run into an infinite loop!
  bool check_input_;

  // Whether or not we check the result.
  // TODO(user): Make the check more exhaustive by checking the optimality?
  bool check_result_;

  // Statistics about this class.
  mutable StatsGroup stats_;

 private:
  DISALLOW_COPY_AND_ASSIGN(GenericMaxFlow);
};

#if !SWIG

// Default instance MaxFlow that uses StarGraph. Note that we cannot just use a
// typedef because of dependent code expecting MaxFlow to be a real class.
// TODO(user): Modify this code and remove it.
class MaxFlow : public GenericMaxFlow<StarGraph> {
 public:
  MaxFlow(const StarGraph* graph, NodeIndex source, NodeIndex target)
      : GenericMaxFlow(graph, source, target) {}
};

#endif  // SWIG

template <typename Element, typename IntegerPriority>
bool PriorityQueueWithRestrictedPush<Element, IntegerPriority>::IsEmpty()
    const {
  return even_queue_.empty() && odd_queue_.empty();
}

template <typename Element, typename IntegerPriority>
void PriorityQueueWithRestrictedPush<Element, IntegerPriority>::Clear() {
  even_queue_.clear();
  odd_queue_.clear();
}

template <typename Element, typename IntegerPriority>
void PriorityQueueWithRestrictedPush<Element, IntegerPriority>::Push(
    Element element, IntegerPriority priority) {
  // Since users may rely on it, we DCHECK the exact condition.
  DCHECK(even_queue_.empty() || priority >= even_queue_.back().second - 1);
  DCHECK(odd_queue_.empty() || priority >= odd_queue_.back().second - 1);

  // Note that the DCHECK() below are less restrictive than the ones above but
  // check a necessary and sufficient condition for the priority queue to behave
  // as expected.
  if (priority & 1) {
    DCHECK(odd_queue_.empty() || priority >= odd_queue_.back().second);
    odd_queue_.push_back(std::make_pair(element, priority));
  } else {
    DCHECK(even_queue_.empty() || priority >= even_queue_.back().second);
    even_queue_.push_back(std::make_pair(element, priority));
  }
}

template <typename Element, typename IntegerPriority>
Element PriorityQueueWithRestrictedPush<Element, IntegerPriority>::Pop() {
  DCHECK(!IsEmpty());
  if (even_queue_.empty()) return PopBack(&odd_queue_);
  if (odd_queue_.empty()) return PopBack(&even_queue_);
  if (odd_queue_.back().second > even_queue_.back().second) {
    return PopBack(&odd_queue_);
  } else {
    return PopBack(&even_queue_);
  }
}

template <typename Element, typename IntegerPriority>
Element PriorityQueueWithRestrictedPush<Element, IntegerPriority>::PopBack(
    std::vector<std::pair<Element, IntegerPriority> >* queue) {
  DCHECK(!queue->empty());
  Element element = queue->back().first;
  queue->pop_back();
  return element;
}

}  // namespace operations_research
#endif  // OR_TOOLS_GRAPH_MAX_FLOW_H_