revised_simplex.h 36.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Solves a Linear Programing problem using the Revised Simplex algorithm
// as described by G.B. Dantzig.
// The general form is:
// min c.x where c and x are n-vectors,
// subject to Ax = b where A is an mxn-matrix, b an m-vector,
// with l <= x <= u, i.e.
// l_i <= x_i <= u_i for all i in {1 .. m}.
//
// c.x is called the objective function.
// Each row a_i of A is an n-vector, and a_i.x = b_i is a linear constraint.
// A is called the constraint matrix.
// b is called the right hand side (rhs) of the problem.
// The constraints l_i <= x_i <= u_i are called the generalized bounds
// of the problem (most introductory textbooks only deal with x_i >= 0, as
// did the first version of the Simplex algorithm). Note that l_i and u_i
// can be -infinity and +infinity, respectively.
//
// To simplify the entry of data, this code actually handles problems in the
// form:
// min c.x where c and x are n-vectors,
// subject to:
//  A1 x <= b1
//  A2 x >= b2
//  A3 x  = b3
//  l <= x <= u
//
// It transforms the above problem into
// min c.x where c and x are n-vectors,
// subject to:
//  A1 x + s1 = b1
//  A2 x - s2 = b2
//  A3 x      = b3
//  l <= x <= u
//  s1 >= 0, s2 >= 0
//  where xT = (x1, x2, x3),
//  s1 is an m1-vector (m1 being the height of A1),
//  s2 is an m2-vector (m2 being the height of A2).
//
// The following are very good references for terminology, data structures,
// and algorithms. They all contain a wealth of references.
//
// Vasek Chvátal, "Linear Programming," W.H. Freeman, 1983. ISBN 978-0716715870.
// http://www.amazon.com/dp/0716715872
//
// Robert J. Vanderbei, "Linear Programming: Foundations and Extensions,"
// Springer, 2010, ISBN-13: 978-1441944979
// http://www.amazon.com/dp/1441944974
//
// Istvan Maros, "Computational Techniques of the Simplex Method.", Springer,
// 2002, ISBN 978-1402073328
// http://www.amazon.com/dp/1402073321
//
// ===============================================
// Short description of the dual simplex algorithm.
//
// The dual simplex algorithm uses the same data structure as the primal, but
// progresses towards the optimal solution in a different way:
// * It tries to keep the dual values dual-feasible at all time which means that
//   the reduced costs are of the correct sign depending on the bounds of the
//   non-basic variables. As a consequence the values of the basic variable are
//   out of bound until the optimal is reached.
// * A basic leaving variable is selected first (dual pricing) and then a
//   corresponding entering variable is selected. This is done in such a way
//   that the dual objective value increases (lower bound on the optimal
//   solution).
// * Once the basis pivot is chosen, the variable values and the reduced costs
//   are updated the same way as in the primal algorithm.
//
// Good references on the Dual simplex algorithm are:
//
// Robert Fourer, "Notes on the Dual simplex Method", March 14, 1994.
// http://users.iems.northwestern.edu/~4er/WRITINGS/dual.pdf
//
// Achim Koberstein, "The dual simplex method, techniques for a fast and stable
// implementation", PhD, Paderborn, Univ., 2005.
// http://digital.ub.uni-paderborn.de/hs/download/pdf/3885?originalFilename=true

#ifndef OR_TOOLS_GLOP_REVISED_SIMPLEX_H_
#define OR_TOOLS_GLOP_REVISED_SIMPLEX_H_

#include <string>
#include <vector>

#include "ortools/base/integral_types.h"
#include "ortools/base/macros.h"
#include "ortools/glop/basis_representation.h"
#include "ortools/glop/dual_edge_norms.h"
#include "ortools/glop/entering_variable.h"
#include "ortools/glop/parameters.pb.h"
#include "ortools/glop/primal_edge_norms.h"
#include "ortools/glop/reduced_costs.h"
#include "ortools/glop/status.h"
#include "ortools/glop/update_row.h"
#include "ortools/glop/variable_values.h"
#include "ortools/glop/variables_info.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_print_utils.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/scattered_vector.h"
#include "ortools/lp_data/sparse_row.h"
#include "ortools/util/random_engine.h"
#include "ortools/util/time_limit.h"

namespace operations_research {
namespace glop {

// Holds the statuses of all the variables, including slack variables. There
// is no point storing constraint statuses since internally all constraints are
// always fixed to zero.
//
// Note that this is the minimal amount of information needed to perform a "warm
// start". Using this information and the original linear program, the basis can
// be refactorized and all the needed quantities derived.
//
// TODO(user): Introduce another state class to store a complete state of the
// solver. Using this state and the original linear program, the solver can be
// restarted with as little time overhead as possible. This is especially useful
// for strong branching in a MIP context.
struct BasisState {
  // TODO(user): A MIP solver will potentially store a lot of BasicStates so
  // memory usage is important. It is possible to use only 2 bits for one
  // VariableStatus enum. To achieve this, the FIXED_VALUE status can be
  // converted to either AT_LOWER_BOUND or AT_UPPER_BOUND and decoded properly
  // later since this will be used with a given linear program. This way we can
  // even encode more information by using the reduced cost sign to choose to
  // which bound the fixed status correspond.
  VariableStatusRow statuses;

  // Returns true if this state is empty.
  bool IsEmpty() const { return statuses.empty(); }
};

// Entry point of the revised simplex algorithm implementation.
class RevisedSimplex {
 public:
  RevisedSimplex();

  // Sets or gets the algorithm parameters to be used on the next Solve().
  void SetParameters(const GlopParameters& parameters);
  const GlopParameters& GetParameters() const { return parameters_; }

  // Solves the given linear program.
  //
  // Expects that the linear program is in the equations form Ax = 0 created by
  // LinearProgram::AddSlackVariablesForAllRows, i.e. the rightmost square
  // submatrix of A is an identity matrix, all its columns have been marked as
  // slack variables, and the bounds of all constraints have been set to [0, 0].
  // Returns ERROR_INVALID_PROBLEM, if these assumptions are violated.
  //
  // By default, the algorithm tries to exploit the computation done during the
  // last Solve() call. It will analyze the difference of the new linear program
  // and try to use the previously computed solution as a warm-start. To disable
  // this behavior or give explicit warm-start data, use one of the State*()
  // functions below.
  ABSL_MUST_USE_RESULT Status Solve(const LinearProgram& lp,
                                    TimeLimit* time_limit);

  // Do not use the current solution as a warm-start for the next Solve(). The
  // next Solve() will behave as if the class just got created.
  void ClearStateForNextSolve();

  // Uses the given state as a warm-start for the next Solve() call.
  void LoadStateForNextSolve(const BasisState& state);

  // Advanced usage. Tells the next Solve() that the matrix inside the linear
  // program will not change compared to the one used the last time Solve() was
  // called. This allows to bypass the somewhat costly check of comparing both
  // matrices. Note that this call will be ignored if Solve() was never called
  // or if ClearStateForNextSolve() was called.
  void NotifyThatMatrixIsUnchangedForNextSolve();

  // Getters to retrieve all the information computed by the last Solve().
  RowIndex GetProblemNumRows() const;
  ColIndex GetProblemNumCols() const;
  ProblemStatus GetProblemStatus() const;
  Fractional GetObjectiveValue() const;
  int64 GetNumberOfIterations() const;
  Fractional GetVariableValue(ColIndex col) const;
  Fractional GetReducedCost(ColIndex col) const;
  const DenseRow& GetReducedCosts() const;
  Fractional GetDualValue(RowIndex row) const;
  Fractional GetConstraintActivity(RowIndex row) const;
  VariableStatus GetVariableStatus(ColIndex col) const;
  ConstraintStatus GetConstraintStatus(RowIndex row) const;
  const BasisState& GetState() const;
  double DeterministicTime() const;
  bool objective_limit_reached() const { return objective_limit_reached_; }

  // If the problem status is PRIMAL_UNBOUNDED (respectively DUAL_UNBOUNDED),
  // then the solver has a corresponding primal (respectively dual) ray to show
  // the unboundness. From a primal (respectively dual) feasible solution any
  // positive multiple of this ray can be added to the solution and keep it
  // feasible. Moreover, by doing so, the objective of the problem will improve
  // and its magnitude will go to infinity.
  //
  // Note that when the problem is DUAL_UNBOUNDED, the dual ray is also known as
  // the Farkas proof of infeasibility of the problem.
  const DenseRow& GetPrimalRay() const;
  const DenseColumn& GetDualRay() const;

  // This is the "dual ray" linear combination of the matrix rows.
  const DenseRow& GetDualRayRowCombination() const;

  // Returns the index of the column in the basis and the basis factorization.
  // Note that the order of the column in the basis is important since it is the
  // one used by the various solve functions provided by the BasisFactorization
  // class.
  ColIndex GetBasis(RowIndex row) const;

  const ScatteredRow& GetUnitRowLeftInverse(RowIndex row) {
    return update_row_.ComputeAndGetUnitRowLeftInverse(row);
  }

  // Returns a copy of basis_ vector for outside applications (like cuts) to
  // have the correspondence between rows and columns of the dictionary.
  RowToColMapping GetBasisVector() const { return basis_; }

  const BasisFactorization& GetBasisFactorization() const;

  // Returns statistics about this class as a string.
  std::string StatString();

  // Computes the dictionary B^-1*N on-the-fly row by row. Returns the resulting
  // matrix as a vector of sparse rows so that it is easy to use it on the left
  // side in the matrix multiplication. Runs in O(num_non_zeros_in_matrix).
  // TODO(user): Use row scales as well.
  RowMajorSparseMatrix ComputeDictionary(const DenseRow* column_scales);

  // Initializes the matrix for the given 'linear_program' and 'state' and
  // computes the variable values for basic variables using non-basic variables.
  void ComputeBasicVariablesForState(const LinearProgram& linear_program,
                                     const BasisState& state);

 private:
  // Propagates parameters_ to all the other classes that need it.
  //
  // TODO(user): Maybe a better design is for them to have a reference to a
  // unique parameters object? It will clutter a bit more these classes'
  // constructor though.
  void PropagateParameters();

  // Returns a string containing the same information as with GetSolverStats,
  // but in a much more human-readable format. For example:
  //     Problem status                               : Optimal
  //     Solving time                                 : 1.843
  //     Number of iterations                         : 12345
  //     Time for solvability (first phase)           : 1.343
  //     Number of iterations for solvability         : 10000
  //     Time for optimization                        : 0.5
  //     Number of iterations for optimization        : 2345
  //     Maximum time allowed in seconds              : 6000
  //     Maximum number of iterations                 : 1000000
  //     Stop after first basis                       : 0
  std::string GetPrettySolverStats() const;

  // Returns a string containing formatted information about the variable
  // corresponding to column col.
  std::string SimpleVariableInfo(ColIndex col) const;

  // Displays a short string with the current iteration and objective value.
  void DisplayIterationInfo() const;

  // Displays the error bounds of the current solution.
  void DisplayErrors() const;

  // Displays the status of the variables.
  void DisplayInfoOnVariables() const;

  // Displays the bounds of the variables.
  void DisplayVariableBounds();

  // Displays the following information:
  //   * Linear Programming problem as a dictionary, taking into
  //     account the iterations that have been made;
  //   * Variable info;
  //   * Reduced costs;
  //   * Variable bounds.
  // A dictionary is in the form:
  // xB = value + sum_{j in N}  pa_ij x_j
  // z = objective_value + sum_{i in N}  rc_i x_i
  // where the pa's are the coefficients of the matrix after the pivotings
  // and the rc's are the reduced costs, i.e. the coefficients of the objective
  // after the pivotings.
  // Dictionaries are the modern way of presenting the result of an iteration
  // of the Simplex algorithm in the literature.
  void DisplayRevisedSimplexDebugInfo();

  // Displays the Linear Programming problem as it was input.
  void DisplayProblem() const;

  // Returns the current objective value. This is just the sum of the current
  // variable values times their current cost.
  Fractional ComputeObjectiveValue() const;

  // Returns the current objective of the linear program given to Solve() using
  // the initial costs, maximization direction, objective offset and objective
  // scaling factor.
  Fractional ComputeInitialProblemObjectiveValue() const;

  // Assigns names to variables. Variables in the input will be named
  // x1..., slack variables will be s1... .
  void SetVariableNames();

  // Computes the initial variable status from its type. A constrained variable
  // is set to the lowest of its 2 bounds in absolute value.
  VariableStatus ComputeDefaultVariableStatus(ColIndex col) const;

  // Sets the variable status and derives the variable value according to the
  // exact status definition. This can only be called for non-basic variables
  // because the value of a basic variable is computed from the values of the
  // non-basic variables.
  void SetNonBasicVariableStatusAndDeriveValue(ColIndex col,
                                               VariableStatus status);

  // Checks if the basis_ and is_basic_ arrays are well formed. Also checks that
  // the variable statuses are consistent with this basis. Returns true if this
  // is the case. This is meant to be used in debug mode only.
  bool BasisIsConsistent() const;

  // Moves the column entering_col into the basis at position basis_row. Removes
  // the current basis column at position basis_row from the basis and sets its
  // status to leaving_variable_status.
  void UpdateBasis(ColIndex entering_col, RowIndex basis_row,
                   VariableStatus leaving_variable_status);

  // Initializes matrix-related internal data. Returns true if this data was
  // unchanged. If not, also sets only_change_is_new_rows to true if compared
  // to the current matrix, the only difference is that new rows have been
  // added (with their corresponding extra slack variables).  Similarly, sets
  // only_change_is_new_cols to true if the only difference is that new columns
  // have been added, in which case also sets num_new_cols to the number of
  // new columns.
  bool InitializeMatrixAndTestIfUnchanged(const LinearProgram& lp,
                                          bool* only_change_is_new_rows,
                                          bool* only_change_is_new_cols,
                                          ColIndex* num_new_cols);

  // Initializes bound-related internal data. Returns true if unchanged.
  bool InitializeBoundsAndTestIfUnchanged(const LinearProgram& lp);

  // Checks if the only change to the bounds is the addition of new columns,
  // and that the new columns have at least one bound equal to zero.
  bool OldBoundsAreUnchangedAndNewVariablesHaveOneBoundAtZero(
      const LinearProgram& lp, ColIndex num_new_cols);

  // Initializes objective-related internal data. Returns true if unchanged.
  bool InitializeObjectiveAndTestIfUnchanged(const LinearProgram& lp);

  // Computes the stopping criterion on the problem objective value.
  void InitializeObjectiveLimit(const LinearProgram& lp);

  // Initializes the variable statuses using a warm-start basis.
  void InitializeVariableStatusesForWarmStart(const BasisState& state,
                                              ColIndex num_new_cols);

  // Initializes the starting basis. In most cases it starts by the all slack
  // basis and tries to apply some heuristics to replace fixed variables.
  ABSL_MUST_USE_RESULT Status CreateInitialBasis();

  // Sets the initial basis to the given columns, try to factorize it and
  // recompute the basic variable values.
  ABSL_MUST_USE_RESULT Status
  InitializeFirstBasis(const RowToColMapping& initial_basis);

  // Entry point for the solver initialization.
  ABSL_MUST_USE_RESULT Status Initialize(const LinearProgram& lp);

  // Saves the current variable statuses in solution_state_.
  void SaveState();

  // Displays statistics on what kinds of variables are in the current basis.
  void DisplayBasicVariableStatistics();

  // Tries to reduce the initial infeasibility (stored in error_) by using the
  // singleton columns present in the problem. A singleton column is a column
  // with only one non-zero. This is used by CreateInitialBasis().
  void UseSingletonColumnInInitialBasis(RowToColMapping* basis);

  // Returns the number of empty rows in the matrix, i.e. rows where all
  // the coefficients are zero.
  RowIndex ComputeNumberOfEmptyRows();

  // Returns the number of empty columns in the matrix, i.e. columns where all
  // the coefficients are zero.
  ColIndex ComputeNumberOfEmptyColumns();

  // This method transforms a basis for the first phase, with the optimal
  // value at zero, into a feasible basis for the initial problem, thus
  // preparing the execution of phase-II of the algorithm.
  void CleanUpBasis();

  // If the primal maximum residual is too large, recomputes the basic variable
  // value from the non-basic ones. This function also perturbs the bounds
  // during the primal simplex if too many iterations are degenerate.
  //
  // Only call this on a refactorized basis to have the best precision.
  void CorrectErrorsOnVariableValues();

  // Computes b - A.x in error_
  void ComputeVariableValuesError();

  // Solves the system B.d = a where a is the entering column (given by col).
  // Known as FTRAN (Forward transformation) in FORTRAN codes.
  // See Chvatal's book for more detail (Chapter 7).
  void ComputeDirection(ColIndex col);

  // Computes a - B.d in error_ and return the maximum std::abs() of its coeffs.
  Fractional ComputeDirectionError(ColIndex col);

  // Computes the ratio of the basic variable corresponding to 'row'. A target
  // bound (upper or lower) is chosen depending on the sign of the entering
  // reduced cost and the sign of the direction 'd_[row]'. The ratio is such
  // that adding 'ratio * d_[row]' to the variable value changes it to its
  // target bound.
  template <bool is_entering_reduced_cost_positive>
  Fractional GetRatio(RowIndex row) const;

  // First pass of the Harris ratio test. Returns the harris ratio value which
  // is an upper bound on the ratio value that the leaving variable can take.
  // Fills leaving_candidates with the ratio and row index of a super-set of the
  // columns with a ratio <= harris_ratio.
  template <bool is_entering_reduced_cost_positive>
  Fractional ComputeHarrisRatioAndLeavingCandidates(
      Fractional bound_flip_ratio, SparseColumn* leaving_candidates) const;

  // Chooses the leaving variable, considering the entering column and its
  // associated reduced cost. If there was a precision issue and the basis is
  // not refactorized, set refactorize to true. Otherwise, the row number of the
  // leaving variable is written in *leaving_row, and the step length
  // is written in *step_length.
  Status ChooseLeavingVariableRow(ColIndex entering_col,
                                  Fractional reduced_cost, bool* refactorize,
                                  RowIndex* leaving_row,
                                  Fractional* step_length,
                                  Fractional* target_bound);

  // Chooses the leaving variable for the primal phase-I algorithm. The
  // algorithm follows more or less what is described in Istvan Maros's book in
  // chapter 9.6 and what is done for the dual phase-I algorithm which was
  // derived from Koberstein's PhD. Both references can be found at the top of
  // this file.
  void PrimalPhaseIChooseLeavingVariableRow(ColIndex entering_col,
                                            Fractional reduced_cost,
                                            bool* refactorize,
                                            RowIndex* leaving_row,
                                            Fractional* step_length,
                                            Fractional* target_bound) const;

  // Chooses an infeasible basic variable. The returned values are:
  // - leaving_row: the basic index of the infeasible leaving variable
  //   or kNoLeavingVariable if no such row exists: the dual simplex algorithm
  //   has terminated and the optimal has been reached.
  // - cost_variation: how much do we improve the objective by moving one unit
  //   along this dual edge.
  // - target_bound: the bound at which the leaving variable should go when
  //   leaving the basis.
  ABSL_MUST_USE_RESULT Status DualChooseLeavingVariableRow(
      RowIndex* leaving_row, Fractional* cost_variation,
      Fractional* target_bound);

  // Updates the prices used by DualChooseLeavingVariableRow() after a simplex
  // iteration by using direction_. The prices are stored in
  // dual_pricing_vector_. Note that this function only takes care of the
  // entering and leaving column dual feasibility status change and that other
  // changes will be dealt with by DualPhaseIUpdatePriceOnReducedCostsChange().
  void DualPhaseIUpdatePrice(RowIndex leaving_row, ColIndex entering_col);

  // Updates the prices used by DualChooseLeavingVariableRow() when the reduced
  // costs of the given columns have changed.
  template <typename Cols>
  void DualPhaseIUpdatePriceOnReducedCostChange(const Cols& cols);

  // Same as DualChooseLeavingVariableRow() but for the phase I of the dual
  // simplex. Here the objective is not to minimize the primal infeasibility,
  // but the dual one, so the variable is not chosen in the same way. See
  // "Notes on the Dual simplex Method" or Istvan Maros, "A Piecewise Linear
  // Dual Phase-1 Algorithm for the Simplex Method", Computational Optimization
  // and Applications, October 2003, Volume 26, Issue 1, pp 63-81.
  // http://rd.springer.com/article/10.1023%2FA%3A1025102305440
  ABSL_MUST_USE_RESULT Status DualPhaseIChooseLeavingVariableRow(
      RowIndex* leaving_row, Fractional* cost_variation,
      Fractional* target_bound);

  // Makes sure the boxed variable are dual-feasible by setting them to the
  // correct bound according to their reduced costs. This is called
  // Dual feasibility correction in the literature.
  //
  // Note that this function is also used as a part of the bound flipping ratio
  // test by flipping the boxed dual-infeasible variables at each iteration.
  //
  // If update_basic_values is true, the basic variable values are updated.
  template <typename BoxedVariableCols>
  void MakeBoxedVariableDualFeasible(const BoxedVariableCols& cols,
                                     bool update_basic_values);

  // Computes the step needed to move the leaving_row basic variable to the
  // given target bound.
  Fractional ComputeStepToMoveBasicVariableToBound(RowIndex leaving_row,
                                                   Fractional target_bound);

  // Returns true if the basis obtained after the given pivot can be factorized.
  bool TestPivot(ColIndex entering_col, RowIndex leaving_row);

  // Gets the current LU column permutation from basis_representation,
  // applies it to basis_ and then sets it to the identity permutation since
  // it will no longer be needed during solves. This function also updates all
  // the data that depends on the column order in basis_.
  void PermuteBasis();

  // Updates the system state according to the given basis pivot.
  // Returns an error if the update could not be done because of some precision
  // issue.
  ABSL_MUST_USE_RESULT Status UpdateAndPivot(ColIndex entering_col,
                                             RowIndex leaving_row,
                                             Fractional target_bound);

  // Displays all the timing stats related to the calling object.
  void DisplayAllStats();

  // Returns whether or not a basis refactorization is needed at the beginning
  // of the main loop in Minimize() or DualMinimize(). The idea is that if a
  // refactorization is going to be needed by one of the components, it is
  // better to do that as soon as possible so that every component can take
  // advantage of it.
  bool NeedsBasisRefactorization(bool refactorize);

  // Calls basis_factorization_.Refactorize() depending on the result of
  // NeedsBasisRefactorization(). Invalidates any data structure that depends
  // on the current factorization. Sets refactorize to false.
  Status RefactorizeBasisIfNeeded(bool* refactorize);

  // Minimize the objective function, be it for satisfiability or for
  // optimization. Used by Solve().
  ABSL_MUST_USE_RESULT Status Minimize(TimeLimit* time_limit);

  // Same as Minimize() for the dual simplex algorithm.
  // TODO(user): remove duplicate code between the two functions.
  ABSL_MUST_USE_RESULT Status DualMinimize(TimeLimit* time_limit);

  // Utility functions to return the current ColIndex of the slack column with
  // given number. Note that currently, such columns are always present in the
  // internal representation of a linear program.
  ColIndex SlackColIndex(RowIndex row) const;

  // Advances the deterministic time in time_limit with the difference between
  // the current internal deterministic time and the internal deterministic time
  // during the last call to this method.
  // TODO(user): Update the internals of revised simplex so that the time
  // limit is updated at the source and remove this method.
  void AdvanceDeterministicTime(TimeLimit* time_limit);

  // Problem status
  ProblemStatus problem_status_;

  // Current number of rows in the problem.
  RowIndex num_rows_;

  // Current number of columns in the problem.
  ColIndex num_cols_;

  // Index of the first slack variable in the input problem. We assume that all
  // variables with index greater or equal to first_slack_col_ are slack
  // variables.
  ColIndex first_slack_col_;

  // We're using vectors after profiling and looking at the generated assembly
  // it's as fast as std::unique_ptr as long as the size is properly reserved
  // beforehand.

  // Compact version of the matrix given to Solve().
  CompactSparseMatrix compact_matrix_;

  // The transpose of compact_matrix_, it may be empty if it is not needed.
  CompactSparseMatrix transposed_matrix_;

  // Stop the algorithm and report feasibility if:
  // - The primal simplex is used, the problem is primal-feasible and the
  //   current objective value is strictly lower than primal_objective_limit_.
  // - The dual simplex is used, the problem is dual-feasible and the current
  //   objective value is strictly greater than dual_objective_limit_.
  Fractional primal_objective_limit_;
  Fractional dual_objective_limit_;

  // Current objective (feasibility for Phase-I, user-provided for Phase-II).
  DenseRow current_objective_;

  // Array of coefficients for the user-defined objective.
  // Indexed by column number. Used in Phase-II.
  DenseRow objective_;

  // Objective offset and scaling factor of the linear program given to Solve().
  // This is used to display the correct objective values in the logs with
  // ComputeInitialProblemObjectiveValue().
  Fractional objective_offset_;
  Fractional objective_scaling_factor_;

  // Array of values representing variable bounds. Indexed by column number.
  DenseRow lower_bound_;
  DenseRow upper_bound_;

  // The bound perturbation to be used for basic variable that are slightly
  // outside their bounds. This contains small values that are non-zero only if
  // the primal simplex ran into many degenerate iterations.
  DenseRow bound_perturbation_;

  // Used in dual phase I to keep track of the non-basic dual infeasible
  // columns and their sign of infeasibility (+1 or -1).
  DenseRow dual_infeasibility_improvement_direction_;
  int num_dual_infeasible_positions_;

  // Used in dual phase I to hold the price of each possible leaving choices
  // and the bitset of the possible leaving candidates.
  DenseColumn dual_pricing_vector_;
  DenseBitColumn is_dual_entering_candidate_;

  // A temporary scattered column that is always reset to all zero after use.
  ScatteredColumn initially_all_zero_scratchpad_;

  // Array of column index, giving the column number corresponding
  // to a given basis row.
  RowToColMapping basis_;

  // Vector of strings containing the names of variables.
  // Indexed by column number.
  StrictITIVector<ColIndex, std::string> variable_name_;

  // Information about the solution computed by the last Solve().
  Fractional solution_objective_value_;
  DenseColumn solution_dual_values_;
  DenseRow solution_reduced_costs_;
  DenseRow solution_primal_ray_;
  DenseColumn solution_dual_ray_;
  DenseRow solution_dual_ray_row_combination_;
  BasisState solution_state_;
  bool solution_state_has_been_set_externally_;

  // Flag used by NotifyThatMatrixIsUnchangedForNextSolve() and changing
  // the behavior of Initialize().
  bool notify_that_matrix_is_unchanged_ = false;

  // This is known as 'd' in the literature and is set during each pivot to the
  // right inverse of the basic entering column of A by ComputeDirection().
  // ComputeDirection() also fills direction_.non_zeros with the position of the
  // non-zero.
  ScatteredColumn direction_;
  Fractional direction_infinity_norm_;

  // Used to compute the error 'b - A.x' or 'a - B.d'.
  DenseColumn error_;

  // Representation of matrix B using eta matrices and LU decomposition.
  BasisFactorization basis_factorization_;

  // Classes responsible for maintaining the data of the corresponding names.
  VariablesInfo variables_info_;
  VariableValues variable_values_;
  DualEdgeNorms dual_edge_norms_;
  PrimalEdgeNorms primal_edge_norms_;
  UpdateRow update_row_;
  ReducedCosts reduced_costs_;

  // Class holding the algorithms to choose the entering column during a simplex
  // pivot.
  EnteringVariable entering_variable_;

  // Temporary memory used by DualMinimize().
  std::vector<ColIndex> bound_flip_candidates_;
  std::vector<std::pair<RowIndex, ColIndex>> pair_to_ignore_;

  // Total number of iterations performed.
  uint64 num_iterations_;

  // Number of iterations performed during the first (feasibility) phase.
  uint64 num_feasibility_iterations_;

  // Number of iterations performed during the second (optimization) phase.
  uint64 num_optimization_iterations_;

  // Total time spent in Solve().
  double total_time_;

  // Time spent in the first (feasibility) phase.
  double feasibility_time_;

  // Time spent in the second (optimization) phase.
  double optimization_time_;

  // The internal deterministic time during the most recent call to
  // RevisedSimplex::AdvanceDeterministicTime.
  double last_deterministic_time_update_;

  // Statistics about the iterations done by Minimize().
  struct IterationStats : public StatsGroup {
    IterationStats()
        : StatsGroup("IterationStats"),
          total("total", this),
          normal("normal", this),
          bound_flip("bound_flip", this),
          degenerate("degenerate", this),
          degenerate_run_size("degenerate_run_size", this) {}
    TimeDistribution total;
    TimeDistribution normal;
    TimeDistribution bound_flip;
    TimeDistribution degenerate;
    IntegerDistribution degenerate_run_size;
  };
  IterationStats iteration_stats_;

  struct RatioTestStats : public StatsGroup {
    RatioTestStats()
        : StatsGroup("RatioTestStats"),
          bound_shift("bound_shift", this),
          abs_used_pivot("abs_used_pivot", this),
          abs_tested_pivot("abs_tested_pivot", this),
          abs_skipped_pivot("abs_skipped_pivot", this),
          direction_density("direction_density", this),
          leaving_choices("leaving_choices", this),
          num_perfect_ties("num_perfect_ties", this) {}
    DoubleDistribution bound_shift;
    DoubleDistribution abs_used_pivot;
    DoubleDistribution abs_tested_pivot;
    DoubleDistribution abs_skipped_pivot;
    RatioDistribution direction_density;
    IntegerDistribution leaving_choices;
    IntegerDistribution num_perfect_ties;
  };
  mutable RatioTestStats ratio_test_stats_;

  // Placeholder for all the function timing stats.
  // Mutable because we time const functions like ChooseLeavingVariableRow().
  mutable StatsGroup function_stats_;

  // Proto holding all the parameters of this algorithm.
  //
  // Note that parameters_ may actually change during a solve as the solver may
  // dynamically adapt some values. It is why we store the argument of the last
  // SetParameters() call in initial_parameters_ so the next Solve() can reset
  // it correctly.
  GlopParameters parameters_;
  GlopParameters initial_parameters_;

  // LuFactorization used to test if a pivot will cause the new basis to
  // not be factorizable.
  LuFactorization test_lu_;

  // Number of degenerate iterations made just before the current iteration.
  int num_consecutive_degenerate_iterations_;

  // Indicate if we are in the feasibility_phase (1st phase) or not.
  bool feasibility_phase_;

  // Indicates whether simplex ended due to the objective limit being reached.
  // Note that it's not enough to compare the final objective value with the
  // limit due to numerical issues (i.e., the limit which is reached within
  // given tolerance on the internal objective may no longer be reached when the
  // objective scaling and offset are taken into account).
  bool objective_limit_reached_;

  // Temporary SparseColumn used by ChooseLeavingVariableRow().
  SparseColumn leaving_candidates_;

  // Temporary vector used to hold the best leaving column candidates that are
  // tied using the current choosing criteria. We actually only store the tied
  // candidate #2, #3, ...; because the first tied candidate is remembered
  // anyway.
  std::vector<RowIndex> equivalent_leaving_choices_;

  // A random number generator.
  random_engine_t random_;

  DISALLOW_COPY_AND_ASSIGN(RevisedSimplex);
};

// Hides the details of the dictionary matrix implementation. In the future,
// GLOP will support generating the dictionary one row at a time without having
// to store the whole matrix in memory.
class RevisedSimplexDictionary {
 public:
  typedef RowMajorSparseMatrix::const_iterator ConstIterator;

  // RevisedSimplex cannot be passed const because we have to call a non-const
  // method ComputeDictionary.
  // TODO(user): Overload this to take RevisedSimplex* alone when the
  // caller would normally pass a nullptr for col_scales so this and
  // ComputeDictionary can take a const& argument.
  RevisedSimplexDictionary(const DenseRow* col_scales,
                           RevisedSimplex* revised_simplex)
      : dictionary_(
            ABSL_DIE_IF_NULL(revised_simplex)->ComputeDictionary(col_scales)),
        basis_vars_(ABSL_DIE_IF_NULL(revised_simplex)->GetBasisVector()) {}

  ConstIterator begin() const { return dictionary_.begin(); }
  ConstIterator end() const { return dictionary_.end(); }

  size_t NumRows() const { return dictionary_.size(); }

  // TODO(user): This function is a better fit for the future custom iterator.
  ColIndex GetBasicColumnForRow(RowIndex r) const { return basis_vars_[r]; }
  SparseRow GetRow(RowIndex r) const { return dictionary_[r]; }

 private:
  const RowMajorSparseMatrix dictionary_;
  const RowToColMapping basis_vars_;
  DISALLOW_COPY_AND_ASSIGN(RevisedSimplexDictionary);
};

// TODO(user): When a row-by-row generation of the dictionary is supported,
// implement DictionaryIterator class that would call it inside operator*().

}  // namespace glop
}  // namespace operations_research

#endif  // OR_TOOLS_GLOP_REVISED_SIMPLEX_H_