preprocessor.h 44.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// This file contains the presolving code for a LinearProgram.
//
// A classical reference is:
// E. D. Andersen, K. D. Andersen, "Presolving in linear programming.",
// Mathematical Programming 71 (1995) 221-245.

#ifndef OR_TOOLS_GLOP_PREPROCESSOR_H_
#define OR_TOOLS_GLOP_PREPROCESSOR_H_

#include <memory>

#include "ortools/glop/parameters.pb.h"
#include "ortools/glop/revised_simplex.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/matrix_scaler.h"

namespace operations_research {
namespace glop {

// --------------------------------------------------------
// Preprocessor
// --------------------------------------------------------
// This is the base class for preprocessors.
//
// TODO(user): On most preprocessors, calling Run() more than once will not work
// as expected. Fix? or document and crash in debug if this happens.
class Preprocessor {
 public:
  explicit Preprocessor(const GlopParameters* parameters);
  Preprocessor(const Preprocessor&) = delete;
  Preprocessor& operator=(const Preprocessor&) = delete;
  virtual ~Preprocessor();

  // Runs the preprocessor by modifying the given linear program. Returns true
  // if a postsolve step will be needed (i.e. RecoverSolution() is not the
  // identity function). Also updates status_ to something different from
  // ProblemStatus::INIT if the problem was solved (including bad statuses
  // like ProblemStatus::ABNORMAL, ProblemStatus::INFEASIBLE, etc.).
  virtual bool Run(LinearProgram* lp) = 0;

  // Stores the optimal solution of the linear program that was passed to
  // Run(). The given solution needs to be set to the optimal solution of the
  // linear program "modified" by Run().
  virtual void RecoverSolution(ProblemSolution* solution) const = 0;

  // Returns the status of the preprocessor.
  // A status different from ProblemStatus::INIT means that the problem is
  // solved and there is not need to call subsequent preprocessors.
  ProblemStatus status() const { return status_; }

  // Some preprocessors only need minimal changes when used with integer
  // variables in a MIP context. Setting this to true allows to consider integer
  // variables as integer in these preprocessors.
  //
  // Not all preprocessors handle integer variables correctly, calling this
  // function on them will cause a LOG(FATAL).
  virtual void UseInMipContext() { in_mip_context_ = true; }

  void SetTimeLimit(TimeLimit* time_limit) { time_limit_ = time_limit; }

 protected:
  // Returns true if a is less than b (or slighlty greater than b with a given
  // tolerance).
  bool IsSmallerWithinFeasibilityTolerance(Fractional a, Fractional b) const {
    return ::operations_research::IsSmallerWithinTolerance(
        a, b, parameters_.solution_feasibility_tolerance());
  }
  bool IsSmallerWithinPreprocessorZeroTolerance(Fractional a,
                                                Fractional b) const {
    // TODO(user): use an absolute tolerance here to be even more defensive?
    return ::operations_research::IsSmallerWithinTolerance(
        a, b, parameters_.preprocessor_zero_tolerance());
  }

  ProblemStatus status_;
  const GlopParameters& parameters_;
  bool in_mip_context_;
  std::unique_ptr<TimeLimit> infinite_time_limit_;
  TimeLimit* time_limit_;
};

// --------------------------------------------------------
// MainLpPreprocessor
// --------------------------------------------------------
// This is the main LP preprocessor responsible for calling all the other
// preprocessors in this file, possibly more than once.
class MainLpPreprocessor : public Preprocessor {
 public:
  explicit MainLpPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  MainLpPreprocessor(const MainLpPreprocessor&) = delete;
  MainLpPreprocessor& operator=(const MainLpPreprocessor&) = delete;
  ~MainLpPreprocessor() override {}

  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const override;

 private:
  // Runs the given preprocessor and push it on preprocessors_ for the postsolve
  // step when needed.
  void RunAndPushIfRelevant(std::unique_ptr<Preprocessor> preprocessor,
                            const std::string& name, TimeLimit* time_limit,
                            LinearProgram* lp);

  // Stack of preprocessors currently applied to the lp that needs postsolve.
  //
  // TODO(user): This is mutable so that the preprocessor can be freed as soon
  // as their RecoverSolution() is called. Make RecoverSolution() non-const or
  // remove this optimization?
  mutable std::vector<std::unique_ptr<Preprocessor>> preprocessors_;

  // Initial dimension of the lp given to Run(), for displaying purpose.
  EntryIndex initial_num_entries_;
  RowIndex initial_num_rows_;
  ColIndex initial_num_cols_;
};

// --------------------------------------------------------
// ColumnDeletionHelper
// --------------------------------------------------------
// Help preprocessors deal with column deletion.
class ColumnDeletionHelper {
 public:
  ColumnDeletionHelper() {}
  ColumnDeletionHelper(const ColumnDeletionHelper&) = delete;
  ColumnDeletionHelper& operator=(const ColumnDeletionHelper&) = delete;

  // Remember the given column as "deleted" so that it can later be restored
  // by RestoreDeletedColumns(). Optionally, the caller may indicate the
  // value and status of the corresponding variable so that it is automatically
  // restored; if they don't then the restored value and status will be junk
  // and must be set by the caller.
  //
  // The actual deletion is done by LinearProgram::DeleteColumns().
  void MarkColumnForDeletion(ColIndex col);
  void MarkColumnForDeletionWithState(ColIndex col, Fractional value,
                                      VariableStatus status);

  // From a solution omitting the deleted column, expands it and inserts the
  // deleted columns. If values and statuses for the corresponding variables
  // were saved, they'll be restored.
  void RestoreDeletedColumns(ProblemSolution* solution) const;

  // Returns whether or not the given column is marked for deletion.
  bool IsColumnMarked(ColIndex col) const {
    return col < is_column_deleted_.size() && is_column_deleted_[col];
  }

  // Returns a Boolean vector of the column to be deleted.
  const DenseBooleanRow& GetMarkedColumns() const { return is_column_deleted_; }

  // Returns true if no columns have been marked for deletion.
  bool IsEmpty() const { return is_column_deleted_.empty(); }

  // Restores the class to its initial state.
  void Clear();

  // Returns the value that will be restored by
  // RestoreDeletedColumnInSolution(). Note that only the marked position value
  // make sense.
  const DenseRow& GetStoredValue() const { return stored_value_; }

 private:
  DenseBooleanRow is_column_deleted_;

  // Note that this vector has the same size as is_column_deleted_ and that
  // the value of the variable corresponding to a deleted column col is stored
  // at position col. Values of columns not deleted are not used. We use this
  // data structure so columns can be deleted in any order if needed.
  DenseRow stored_value_;
  VariableStatusRow stored_status_;
};

// --------------------------------------------------------
// RowDeletionHelper
// --------------------------------------------------------
// Help preprocessors deal with row deletion.
class RowDeletionHelper {
 public:
  RowDeletionHelper() {}
  RowDeletionHelper(const RowDeletionHelper&) = delete;
  RowDeletionHelper& operator=(const RowDeletionHelper&) = delete;

  // Returns true if no rows have been marked for deletion.
  bool IsEmpty() const { return is_row_deleted_.empty(); }

  // Restores the class to its initial state.
  void Clear();

  // Adds a deleted row to the helper.
  void MarkRowForDeletion(RowIndex row);

  // If the given row was marked for deletion, unmark it.
  void UnmarkRow(RowIndex row);

  // Returns a Boolean vector of the row to be deleted.
  const DenseBooleanColumn& GetMarkedRows() const;

  // Returns whether or not the given row is marked for deletion.
  bool IsRowMarked(RowIndex row) const {
    return row < is_row_deleted_.size() && is_row_deleted_[row];
  }

  // From a solution without the deleted rows, expand it by restoring
  // the deleted rows to a VariableStatus::BASIC status with 0.0 value.
  // This latter value is important, many preprocessors rely on it.
  void RestoreDeletedRows(ProblemSolution* solution) const;

 private:
  DenseBooleanColumn is_row_deleted_;
};

// --------------------------------------------------------
// EmptyColumnPreprocessor
// --------------------------------------------------------
// Removes the empty columns from the problem.
class EmptyColumnPreprocessor : public Preprocessor {
 public:
  explicit EmptyColumnPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  EmptyColumnPreprocessor(const EmptyColumnPreprocessor&) = delete;
  EmptyColumnPreprocessor& operator=(const EmptyColumnPreprocessor&) = delete;
  ~EmptyColumnPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
  ColumnDeletionHelper column_deletion_helper_;
};

// --------------------------------------------------------
// ProportionalColumnPreprocessor
// --------------------------------------------------------
// Removes the proportional columns from the problem when possible. Two columns
// are proportional if one is a non-zero scalar multiple of the other.
//
// Note that in the linear programming literature, two proportional columns are
// usually called duplicates. The notion is the same once the problem has been
// scaled. However, during presolve the columns can't be assumed to be scaled,
// so it makes sense to use the more general notion of proportional columns.
class ProportionalColumnPreprocessor : public Preprocessor {
 public:
  explicit ProportionalColumnPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  ProportionalColumnPreprocessor(const ProportionalColumnPreprocessor&) =
      delete;
  ProportionalColumnPreprocessor& operator=(
      const ProportionalColumnPreprocessor&) = delete;
  ~ProportionalColumnPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;
  void UseInMipContext() final { LOG(FATAL) << "Not implemented."; }

 private:
  // Postsolve information about proportional columns with the same scaled cost
  // that were merged during presolve.

  // The proportionality factor of each column. If two columns are proportional
  // with factor p1 and p2 then p1 times the first column is the same as p2
  // times the second column.
  DenseRow column_factors_;

  // If merged_columns_[col] != kInvalidCol, then column col has been merged
  // into the column merged_columns_[col].
  ColMapping merged_columns_;

  // The old and new variable bounds.
  DenseRow lower_bounds_;
  DenseRow upper_bounds_;
  DenseRow new_lower_bounds_;
  DenseRow new_upper_bounds_;

  ColumnDeletionHelper column_deletion_helper_;
};

// --------------------------------------------------------
// ProportionalRowPreprocessor
// --------------------------------------------------------
// Removes the proportional rows from the problem.
// The linear programming literature also calls such rows duplicates, see the
// same remark above for columns in ProportionalColumnPreprocessor.
class ProportionalRowPreprocessor : public Preprocessor {
 public:
  explicit ProportionalRowPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  ProportionalRowPreprocessor(const ProportionalRowPreprocessor&) = delete;
  ProportionalRowPreprocessor& operator=(const ProportionalRowPreprocessor&) =
      delete;
  ~ProportionalRowPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
  // Informations about proportional rows, only filled for such rows.
  DenseColumn row_factors_;
  RowMapping upper_bound_sources_;
  RowMapping lower_bound_sources_;

  bool lp_is_maximization_problem_;
  RowDeletionHelper row_deletion_helper_;
};

// --------------------------------------------------------
// SingletonPreprocessor
// --------------------------------------------------------
// Removes as many singleton rows and singleton columns as possible from the
// problem. Note that not all types of singleton columns can be removed. See the
// comments below on the SingletonPreprocessor functions for more details.
//
// TODO(user): Generalize the design used in this preprocessor to a general
// "propagation" framework in order to apply as many reductions as possible in
// an efficient manner.

// Holds a triplet (row, col, coefficient).
struct MatrixEntry {
  MatrixEntry(RowIndex _row, ColIndex _col, Fractional _coeff)
      : row(_row), col(_col), coeff(_coeff) {}
  RowIndex row;
  ColIndex col;
  Fractional coeff;
};

// Stores the information needed to undo a singleton row/column deletion.
class SingletonUndo {
 public:
  // The type of a given operation.
  typedef enum {
    ZERO_COST_SINGLETON_COLUMN,
    SINGLETON_ROW,
    SINGLETON_COLUMN_IN_EQUALITY,
    MAKE_CONSTRAINT_AN_EQUALITY,
  } OperationType;

  // Stores the information, which together with the field deleted_columns_ and
  // deleted_rows_ of SingletonPreprocessor, are needed to undo an operation
  // with the given type. Note that all the arguments must refer to the linear
  // program BEFORE the operation is applied.
  SingletonUndo(OperationType type, const LinearProgram& lp, MatrixEntry e,
                ConstraintStatus status);

  // Undo the operation saved in this class, taking into account the deleted
  // columns and rows passed by the calling instance of SingletonPreprocessor.
  // Note that the operations must be undone in the reverse order of the one
  // in which they were applied.
  void Undo(const GlopParameters& parameters,
            const SparseMatrix& deleted_columns,
            const SparseMatrix& deleted_rows, ProblemSolution* solution) const;

 private:
  // Actual undo functions for each OperationType.
  // Undo() just calls the correct one.
  void SingletonRowUndo(const SparseMatrix& deleted_columns,
                        ProblemSolution* solution) const;
  void ZeroCostSingletonColumnUndo(const GlopParameters& parameters,
                                   const SparseMatrix& deleted_rows,
                                   ProblemSolution* solution) const;
  void SingletonColumnInEqualityUndo(const GlopParameters& parameters,
                                     const SparseMatrix& deleted_rows,
                                     ProblemSolution* solution) const;
  void MakeConstraintAnEqualityUndo(ProblemSolution* solution) const;

  // All the information needed during undo.
  OperationType type_;
  bool is_maximization_;
  MatrixEntry e_;
  Fractional cost_;

  // TODO(user): regroup the pair (lower bound, upper bound) in a bound class?
  Fractional variable_lower_bound_;
  Fractional variable_upper_bound_;
  Fractional constraint_lower_bound_;
  Fractional constraint_upper_bound_;

  // This in only used with MAKE_CONSTRAINT_AN_EQUALITY undo.
  // TODO(user): Clean that up using many Undo classes and virtual functions.
  ConstraintStatus constraint_status_;
};

// Deletes as many singleton rows or singleton columns as possible. Note that
// each time we delete a row or a column, new singletons may be created.
class SingletonPreprocessor : public Preprocessor {
 public:
  explicit SingletonPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  SingletonPreprocessor(const SingletonPreprocessor&) = delete;
  SingletonPreprocessor& operator=(const SingletonPreprocessor&) = delete;
  ~SingletonPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
  // Returns the MatrixEntry of the given singleton row or column, taking into
  // account the rows and columns that were already deleted.
  MatrixEntry GetSingletonColumnMatrixEntry(ColIndex col,
                                            const SparseMatrix& matrix);
  MatrixEntry GetSingletonRowMatrixEntry(RowIndex row,
                                         const SparseMatrix& matrix_transpose);

  // A singleton row can always be removed by changing the corresponding
  // variable bounds to take into account the bounds on this singleton row.
  void DeleteSingletonRow(MatrixEntry e, LinearProgram* lp);

  // Internal operation when removing a zero-cost singleton column corresponding
  // to the given entry. This modifies the constraint bounds to take into acount
  // the bounds of the corresponding variable.
  void UpdateConstraintBoundsWithVariableBounds(MatrixEntry e,
                                                LinearProgram* lp);

  // A singleton column with a cost of zero can always be removed by changing
  // the corresponding constraint bounds to take into acount the bound of this
  // singleton column.
  void DeleteZeroCostSingletonColumn(const SparseMatrix& matrix_transpose,
                                     MatrixEntry e, LinearProgram* lp);

  // Returns true if the constraint associated to the given singleton column was
  // an equality or could be made one:
  // If a singleton variable is free in a direction that improves the cost, then
  // we can always move it as much as possible in this direction. Only the
  // constraint will stop us, making it an equality. If the constraint doesn't
  // stop us, then the program is unbounded (provided that there is a feasible
  // solution).
  //
  // Note that this operation does not need any "undo" during the post-solve. At
  // optimality, the dual value on the constraint row will be of the correct
  // sign, and relaxing the constraint bound will not impact the dual
  // feasibility of the solution.
  //
  // TODO(user): this operation can be generalized to columns with just one
  // blocking constraint. Investigate how to use this. The 'reverse' can
  // probably also be done, relaxing a constraint that is blocking a
  // unconstrained variable.
  bool MakeConstraintAnEqualityIfPossible(const SparseMatrix& matrix_transpose,
                                          MatrixEntry e, LinearProgram* lp);

  // If a singleton column appears in an equality, we can remove its cost by
  // changing the other variables cost using the constraint. We can then delete
  // the column like in DeleteZeroCostSingletonColumn().
  void DeleteSingletonColumnInEquality(const SparseMatrix& matrix_transpose,
                                       MatrixEntry e, LinearProgram* lp);

  ColumnDeletionHelper column_deletion_helper_;
  RowDeletionHelper row_deletion_helper_;
  std::vector<SingletonUndo> undo_stack_;

  // This is used as a "cache" by MakeConstraintAnEqualityIfPossible() to avoid
  // scanning more than once each row. See the code to see how this is used.
  gtl::ITIVector<RowIndex, bool> row_sum_is_cached_;
  gtl::ITIVector<RowIndex, SumWithNegativeInfiniteAndOneMissing> row_lb_sum_;
  gtl::ITIVector<RowIndex, SumWithPositiveInfiniteAndOneMissing> row_ub_sum_;

  // The columns that are deleted by this preprocessor.
  SparseMatrix deleted_columns_;
  // The transpose of the rows that are deleted by this preprocessor.
  // TODO(user): implement a RowMajorSparseMatrix class to simplify the code.
  SparseMatrix deleted_rows_;
};

// --------------------------------------------------------
// FixedVariablePreprocessor
// --------------------------------------------------------
// Removes the fixed variables from the problem.
class FixedVariablePreprocessor : public Preprocessor {
 public:
  explicit FixedVariablePreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  FixedVariablePreprocessor(const FixedVariablePreprocessor&) = delete;
  FixedVariablePreprocessor& operator=(const FixedVariablePreprocessor&) =
      delete;
  ~FixedVariablePreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
  ColumnDeletionHelper column_deletion_helper_;
};

// --------------------------------------------------------
// ForcingAndImpliedFreeConstraintPreprocessor
// --------------------------------------------------------
// This preprocessor computes for each constraint row the bounds that are
// implied by the variable bounds and applies one of the following reductions:
//
// * If the intersection of the implied bounds and the current constraint bounds
// is empty (modulo some tolerance), the problem is INFEASIBLE.
//
// * If the intersection of the implied bounds and the current constraint bounds
// is a singleton (modulo some tolerance), then the constraint is said to be
// forcing and all the variables that appear in it can be fixed to one of their
// bounds. All these columns and the constraint row is removed.
//
// * If the implied bounds are included inside the current constraint bounds
// (modulo some tolerance) then the constraint is said to be redundant or
// implied free. Its bounds are relaxed and the constraint will be removed
// later by the FreeConstraintPreprocessor.
//
// * Otherwise, wo do nothing.
class ForcingAndImpliedFreeConstraintPreprocessor : public Preprocessor {
 public:
  explicit ForcingAndImpliedFreeConstraintPreprocessor(
      const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  ForcingAndImpliedFreeConstraintPreprocessor(
      const ForcingAndImpliedFreeConstraintPreprocessor&) = delete;
  ForcingAndImpliedFreeConstraintPreprocessor& operator=(
      const ForcingAndImpliedFreeConstraintPreprocessor&) = delete;
  ~ForcingAndImpliedFreeConstraintPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
  bool lp_is_maximization_problem_;
  SparseMatrix deleted_columns_;
  DenseRow costs_;
  DenseBooleanColumn is_forcing_up_;
  ColumnDeletionHelper column_deletion_helper_;
  RowDeletionHelper row_deletion_helper_;
};

// --------------------------------------------------------
// ImpliedFreePreprocessor
// --------------------------------------------------------
// It is possible to compute "implied" bounds on a variable from the bounds of
// all the other variables and the constraints in which this variable take
// place. If such "implied" bounds are inside the variable bounds, then the
// variable bounds can be relaxed and the variable is said to be "implied free".
//
// This preprocessor detects the implied free variables and make as many as
// possible free with a priority towards low-degree columns. This transformation
// will make the simplex algorithm more efficient later, but will also make it
// possible to reduce the problem by applying subsequent transformations:
//
// * The SingletonPreprocessor already deals with implied free singleton
// variables and removes the columns and the rows in which they appear.
//
// * Any multiple of the column of a free variable can be added to any other
// column without changing the linear program solution. This is the dual
// counterpart of the fact that any multiple of an equality row can be added to
// any row.
//
// TODO(user): Only process doubleton columns so we have more chance in the
// later passes to create more doubleton columns? Such columns lead to a smaller
// problem thanks to the DoubletonFreeColumnPreprocessor.
class ImpliedFreePreprocessor : public Preprocessor {
 public:
  explicit ImpliedFreePreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  ImpliedFreePreprocessor(const ImpliedFreePreprocessor&) = delete;
  ImpliedFreePreprocessor& operator=(const ImpliedFreePreprocessor&) = delete;
  ~ImpliedFreePreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
  // This preprocessor adds fixed offsets to some variables. We remember those
  // here to un-offset them in RecoverSolution().
  DenseRow variable_offsets_;

  // This preprocessor causes some variables who would normally be
  // AT_{LOWER,UPPER}_BOUND to be VariableStatus::FREE. We store the restore
  // value of these variables; which will only be used (eg. restored) if the
  // variable actually turns out to be VariableStatus::FREE.
  VariableStatusRow postsolve_status_of_free_variables_;
};

// --------------------------------------------------------
// DoubletonFreeColumnPreprocessor
// --------------------------------------------------------
// This preprocessor removes one of the two rows in which a doubleton column of
// a free variable appears. Since we can add any multiple of such a column to
// any other column, the way this works is that we can always remove all the
// entries on one row.
//
// Actually, we can remove all the entries except the one of the free column.
// But we will be left with a singleton row that we can delete in the same way
// as what is done in SingletonPreprocessor. That is by reporting the constraint
// bounds into the one of the originally free variable. After this operation,
// the doubleton free column will become a singleton and may or may not be
// removed later by the SingletonPreprocessor.
//
// Note that this preprocessor can be seen as the dual of the
// DoubletonEqualityRowPreprocessor since when taking the dual, an equality row
// becomes a free variable and vice versa.
//
// Note(user): As far as I know, this doubleton free column procedure is more
// general than what can be found in the research papers or in any of the linear
// solver open source codes as of July 2013. All of them only process such
// columns if one of the two rows is also an equality which is not actually
// required. Most probably, commercial solvers do use it though.
class DoubletonFreeColumnPreprocessor : public Preprocessor {
 public:
  explicit DoubletonFreeColumnPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  DoubletonFreeColumnPreprocessor(const DoubletonFreeColumnPreprocessor&) =
      delete;
  DoubletonFreeColumnPreprocessor& operator=(
      const DoubletonFreeColumnPreprocessor&) = delete;
  ~DoubletonFreeColumnPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
  enum RowChoice {
    DELETED = 0,
    MODIFIED = 1,
    // This is just a constant for the number of rows in a doubleton column.
    // That is 2, one will be DELETED, the other MODIFIED.
    NUM_ROWS = 2,
  };
  struct RestoreInfo {
    // The index of the original free doubleton column and its objective.
    ColIndex col;
    Fractional objective_coefficient;

    // The row indices of the two involved rows and their coefficients on
    // column col.
    RowIndex row[NUM_ROWS];
    Fractional coeff[NUM_ROWS];

    // The deleted row as a column.
    SparseColumn deleted_row_as_column;
  };

  std::vector<RestoreInfo> restore_stack_;
  RowDeletionHelper row_deletion_helper_;
};

// --------------------------------------------------------
// UnconstrainedVariablePreprocessor
// --------------------------------------------------------
// If for a given variable, none of the constraints block it in one direction
// and this direction improves the objective, then this variable can be fixed to
// its bound in this direction. If this bound is infinite and the variable cost
// is non-zero, then the problem is unbounded.
//
// More generally, by using the constraints and the variables that are unbounded
// on one side, one can derive bounds on the dual values. These can be
// translated into bounds on the reduced costs or the columns, which may force
// variables to their bounds. This is called forcing and dominated columns in
// the Andersen & Andersen paper.
class UnconstrainedVariablePreprocessor : public Preprocessor {
 public:
  explicit UnconstrainedVariablePreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  UnconstrainedVariablePreprocessor(const UnconstrainedVariablePreprocessor&) =
      delete;
  UnconstrainedVariablePreprocessor& operator=(
      const UnconstrainedVariablePreprocessor&) = delete;
  ~UnconstrainedVariablePreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

  // Removes the given variable and all the rows in which it appears: If a
  // variable is unconstrained with a zero cost, then all the constraints in
  // which it appears can be made free! More precisely, during postsolve, if
  // such a variable is unconstrained towards +kInfinity, for any activity value
  // of the involved constraints, an M exists such that for each value of the
  // variable >= M the problem will be feasible.
  //
  // The algorithm during postsolve is to find a feasible value for all such
  // variables while trying to keep their magnitudes small (for better numerical
  // behavior). target_bound should take only two possible values: +/-kInfinity.
  void RemoveZeroCostUnconstrainedVariable(ColIndex col,
                                           Fractional target_bound,
                                           LinearProgram* lp);

 private:
  // Lower/upper bounds on the feasible dual value. We use constraints and
  // variables unbounded in one direction to derive these bounds. We use these
  // bounds to compute bounds on the reduced costs of the problem variables.
  // Note that any finite bounds on a reduced cost means that the variable
  // (ignoring its domain) can move freely in one direction.
  DenseColumn dual_lb_;
  DenseColumn dual_ub_;

  // Indicates if a given column may have participated in the current lb/ub
  // on the reduced cost of the same column.
  DenseBooleanRow may_have_participated_ub_;
  DenseBooleanRow may_have_participated_lb_;

  ColumnDeletionHelper column_deletion_helper_;
  RowDeletionHelper row_deletion_helper_;
  DenseColumn rhs_;
  DenseColumn activity_sign_correction_;
  DenseBooleanRow is_unbounded_;

  SparseMatrix deleted_columns_;
  SparseMatrix deleted_rows_as_column_;
};

// --------------------------------------------------------
// FreeConstraintPreprocessor
// --------------------------------------------------------
// Removes the constraints with no bounds from the problem.
class FreeConstraintPreprocessor : public Preprocessor {
 public:
  explicit FreeConstraintPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  FreeConstraintPreprocessor(const FreeConstraintPreprocessor&) = delete;
  FreeConstraintPreprocessor& operator=(const FreeConstraintPreprocessor&) =
      delete;
  ~FreeConstraintPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
  RowDeletionHelper row_deletion_helper_;
};

// --------------------------------------------------------
// EmptyConstraintPreprocessor
// --------------------------------------------------------
// Removes the constraints with no coefficients from the problem.
class EmptyConstraintPreprocessor : public Preprocessor {
 public:
  explicit EmptyConstraintPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  EmptyConstraintPreprocessor(const EmptyConstraintPreprocessor&) = delete;
  EmptyConstraintPreprocessor& operator=(const EmptyConstraintPreprocessor&) =
      delete;
  ~EmptyConstraintPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
  RowDeletionHelper row_deletion_helper_;
};

// --------------------------------------------------------
// RemoveNearZeroEntriesPreprocessor
// --------------------------------------------------------
// Removes matrix entries that have only a negligible impact on the solution.
// Using the variable bounds, we derive a maximum possible impact, and remove
// the entries whose impact is under a given tolerance.
//
// TODO(user): This preprocessor doesn't work well on badly scaled problems. In
// particular, it will set the objective to zero if all the objective
// coefficients are small! Run it after ScalingPreprocessor or fix the code.
class RemoveNearZeroEntriesPreprocessor : public Preprocessor {
 public:
  explicit RemoveNearZeroEntriesPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  RemoveNearZeroEntriesPreprocessor(const RemoveNearZeroEntriesPreprocessor&) =
      delete;
  RemoveNearZeroEntriesPreprocessor& operator=(
      const RemoveNearZeroEntriesPreprocessor&) = delete;
  ~RemoveNearZeroEntriesPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
};

// --------------------------------------------------------
// SingletonColumnSignPreprocessor
// --------------------------------------------------------
// Make sure that the only coefficient of all singleton columns (i.e. column
// with only one entry) is positive. This is because this way the column will
// be transformed in an identity column by the scaling. This will lead to more
// efficient solve when this column is involved.
class SingletonColumnSignPreprocessor : public Preprocessor {
 public:
  explicit SingletonColumnSignPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  SingletonColumnSignPreprocessor(const SingletonColumnSignPreprocessor&) =
      delete;
  SingletonColumnSignPreprocessor& operator=(
      const SingletonColumnSignPreprocessor&) = delete;
  ~SingletonColumnSignPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
  std::vector<ColIndex> changed_columns_;
};

// --------------------------------------------------------
// DoubletonEqualityRowPreprocessor
// --------------------------------------------------------
// Reduce equality constraints involving two variables (i.e. aX + bY = c),
// by substitution (and thus removal) of one of the variables by the other
// in all the constraints that it is involved in.
class DoubletonEqualityRowPreprocessor : public Preprocessor {
 public:
  explicit DoubletonEqualityRowPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  DoubletonEqualityRowPreprocessor(const DoubletonEqualityRowPreprocessor&) =
      delete;
  DoubletonEqualityRowPreprocessor& operator=(
      const DoubletonEqualityRowPreprocessor&) = delete;
  ~DoubletonEqualityRowPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
  enum ColChoice {
    DELETED = 0,
    MODIFIED = 1,
    // For for() loops iterating over the ColChoice values, and/or arrays.
    NUM_DOUBLETON_COLS = 2,
  };
  static ColChoice OtherColChoice(ColChoice x) {
    return x == DELETED ? MODIFIED : DELETED;
  }

  ColumnDeletionHelper column_deletion_helper_;
  RowDeletionHelper row_deletion_helper_;

  struct RestoreInfo {
    // The row index of the doubleton equality constraint, and its constant.
    RowIndex row;
    Fractional rhs;  // The constant c in the equality aX + bY = c.

    // The indices and the data of the two columns that we touched, exactly
    // as they were beforehand.
    ColIndex col[NUM_DOUBLETON_COLS];
    Fractional coeff[NUM_DOUBLETON_COLS];
    Fractional lb[NUM_DOUBLETON_COLS];
    Fractional ub[NUM_DOUBLETON_COLS];
    SparseColumn column[NUM_DOUBLETON_COLS];
    Fractional objective_coefficient[NUM_DOUBLETON_COLS];

    // If the modified variable has status AT_[LOWER,UPPER]_BOUND, then we'll
    // set one of the two original variables to one of its bounds, and set the
    // other to VariableStatus::BASIC. We store this information (which variable
    // will be set to one of its bounds, and which bound) for each possible
    // outcome.
    struct ColChoiceAndStatus {
      ColChoice col_choice;
      VariableStatus status;
      Fractional value;
      ColChoiceAndStatus() : col_choice(), status(), value(0.0) {}
      ColChoiceAndStatus(ColChoice c, VariableStatus s, Fractional v)
          : col_choice(c), status(s), value(v) {}
    };
    ColChoiceAndStatus bound_backtracking_at_lower_bound;
    ColChoiceAndStatus bound_backtracking_at_upper_bound;
  };
  void SwapDeletedAndModifiedVariableRestoreInfo(RestoreInfo* r);

  std::vector<RestoreInfo> restore_stack_;
  DenseColumn saved_row_lower_bounds_;
  DenseColumn saved_row_upper_bounds_;
};

// Because of numerical imprecision, a preprocessor like
// DoubletonEqualityRowPreprocessor can transform a constraint/variable domain
// like [1, 1+1e-7] to a fixed domain (for ex by multiplying the above domain by
// 1e9). This causes an issue because at postsolve, a FIXED_VALUE status now
// needs to be transformed to a AT_LOWER_BOUND/AT_UPPER_BOUND status. This is
// what this function is doing for the constraint statuses only.
//
// TODO(user): A better solution would simply be to get rid of the FIXED status
// altogether, it is better to simply use AT_LOWER_BOUND/AT_UPPER_BOUND
// depending on the constraining bound in the optimal solution. Note that we can
// always at the end transform any variable/constraint with a fixed domain to
// FIXED_VALUE if needed to keep the same external API.
void FixConstraintWithFixedStatuses(const DenseColumn& row_lower_bounds,
                                    const DenseColumn& row_upper_bounds,
                                    ProblemSolution* solution);

// --------------------------------------------------------
// DualizerPreprocessor
// --------------------------------------------------------
// DualizerPreprocessor may change the given program to its dual depending
// on the value of the parameter solve_dual_problem.
//
// IMPORTANT: FreeConstraintPreprocessor() must be called first since this
// preprocessor does not deal correctly with free constraints.
class DualizerPreprocessor : public Preprocessor {
 public:
  explicit DualizerPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  DualizerPreprocessor(const DualizerPreprocessor&) = delete;
  DualizerPreprocessor& operator=(const DualizerPreprocessor&) = delete;
  ~DualizerPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;
  void UseInMipContext() final {
    LOG(FATAL) << "In the presence of integer variables, "
               << "there is no notion of a dual problem.";
  }

  // Convert the given problem status to the one of its dual.
  ProblemStatus ChangeStatusToDualStatus(ProblemStatus status) const;

 private:
  DenseRow variable_lower_bounds_;
  DenseRow variable_upper_bounds_;

  RowIndex primal_num_rows_;
  ColIndex primal_num_cols_;
  bool primal_is_maximization_problem_;
  RowToColMapping duplicated_rows_;

  // For postsolving the variable/constraint statuses.
  VariableStatusRow dual_status_correspondence_;
  ColMapping slack_or_surplus_mapping_;
};

// --------------------------------------------------------
// ShiftVariableBoundsPreprocessor
// --------------------------------------------------------
// For each variable, inspects its bounds and "shift" them if necessary, so that
// its domain contains zero. A variable that was shifted will always have at
// least one of its bounds to zero. Doing it all at once allows to have a better
// precision when modifying the constraint bounds by using an accurate summation
// algorithm.
//
// Example:
// - A variable with bound [1e10, infinity] will be shifted to [0, infinity].
// - A variable with domain [-1e10, 1e10] will not be shifted. Note that
//   compared to the first case, doing so here may introduce unecessary
//   numerical errors if the variable value in the final solution is close to
//   zero.
//
// The expected impact of this is:
// - Better behavior of the scaling.
// - Better precision and numerical accuracy of the simplex method.
// - Slightly improved speed (because adding a column with a variable value of
//   zero takes no work later).
//
// TODO(user): Having for each variable one of their bounds at zero is a
// requirement for the DualizerPreprocessor and for the implied free column in
// the ImpliedFreePreprocessor. However, shifting a variable with a domain like
// [-1e10, 1e10] may introduce numerical issues. Relax the definition of
// a free variable so that only having a domain containing 0.0 is enough?
class ShiftVariableBoundsPreprocessor : public Preprocessor {
 public:
  explicit ShiftVariableBoundsPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  ShiftVariableBoundsPreprocessor(const ShiftVariableBoundsPreprocessor&) =
      delete;
  ShiftVariableBoundsPreprocessor& operator=(
      const ShiftVariableBoundsPreprocessor&) = delete;
  ~ShiftVariableBoundsPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

  const DenseRow& offsets() const { return offsets_; }

 private:
  // Contains for each variable by how much its bounds where shifted during
  // presolve. Note that the shift was negative (new bound = initial bound -
  // offset).
  DenseRow offsets_;
  // Contains the initial problem bounds. They are needed to get the perfect
  // numerical accuracy for variables at their bound after postsolve.
  DenseRow variable_initial_lbs_;
  DenseRow variable_initial_ubs_;
};

// --------------------------------------------------------
// ScalingPreprocessor
// --------------------------------------------------------
// Scales the SparseMatrix of the linear program using a SparseMatrixScaler.
// This is only applied if the parameter use_scaling is true.
class ScalingPreprocessor : public Preprocessor {
 public:
  explicit ScalingPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  ScalingPreprocessor(const ScalingPreprocessor&) = delete;
  ScalingPreprocessor& operator=(const ScalingPreprocessor&) = delete;
  ~ScalingPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;
  void UseInMipContext() final { LOG(FATAL) << "Not implemented."; }

 private:
  DenseRow variable_lower_bounds_;
  DenseRow variable_upper_bounds_;
  Fractional cost_scaling_factor_;
  Fractional bound_scaling_factor_;
  SparseMatrixScaler scaler_;
};

// --------------------------------------------------------
// ToMinimizationPreprocessor
// --------------------------------------------------------
// Changes the problem from maximization to minimization (if applicable).
class ToMinimizationPreprocessor : public Preprocessor {
 public:
  explicit ToMinimizationPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  ToMinimizationPreprocessor(const ToMinimizationPreprocessor&) = delete;
  ToMinimizationPreprocessor& operator=(const ToMinimizationPreprocessor&) =
      delete;
  ~ToMinimizationPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;
};

// --------------------------------------------------------
// AddSlackVariablesPreprocessor
// --------------------------------------------------------
// Transforms the linear program to the equation form
// min c.x, s.t. A.x = 0. This is done by:
// 1. Introducing slack variables for all constraints; all these variables are
//    introduced with coefficient 1.0, and their bounds are set to be negative
//    bounds of the corresponding constraint.
// 2. Changing the bounds of all constraints to (0, 0) to make them an equality.
//
// As a consequence, the matrix of the linear program always has full row rank
// after this preprocessor. Note that the slack variables are always added last,
// so that the rightmost square sub-matrix is always the identity matrix.
class AddSlackVariablesPreprocessor : public Preprocessor {
 public:
  explicit AddSlackVariablesPreprocessor(const GlopParameters* parameters)
      : Preprocessor(parameters) {}
  AddSlackVariablesPreprocessor(const AddSlackVariablesPreprocessor&) = delete;
  AddSlackVariablesPreprocessor& operator=(
      const AddSlackVariablesPreprocessor&) = delete;
  ~AddSlackVariablesPreprocessor() final {}
  bool Run(LinearProgram* lp) final;
  void RecoverSolution(ProblemSolution* solution) const final;

 private:
  ColIndex first_slack_col_;
};

}  // namespace glop
}  // namespace operations_research

#endif  // OR_TOOLS_GLOP_PREPROCESSOR_H_