set_partition.cs 5.29 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Diagnostics;
using Google.OrTools.ConstraintSolver;

public class SetPartition
{


    //
    // Partition the sets (binary matrix representation).
    //
    public static void partition_sets(Solver solver,
                                      IntVar[,] x, int num_sets, int n)
    {

      for(int i = 0; i <num_sets; i++) {
        for(int j = 0; j <num_sets; j++) {
          if (i != j) {
            // b = solver.Sum([x[i,k]*x[j,k] for k in range(n)]);
            // solver.Add(b == 0);
            solver.Add( (from k in Enumerable.Range(0, n)
                         select (x[i,k]*x[j,k])).
                        ToArray().Sum() == 0);
          }
        }
      }

      // ensure that all integers is in
      // (exactly) one partition
      solver.Add( (from i in Enumerable.Range(0, num_sets)
                   from j in Enumerable.Range(0, n)
                   select x[i,j]).ToArray().Sum() == n);
    }


  /**
   *
   * Set partition problem.
   *
   * Problem formulation from
   * http://www.koalog.com/resources/samples/PartitionProblem.java.html
   * """
   * This is a partition problem.
   * Given the set S = {1, 2, ..., n},
   * it consists in finding two sets A and B such that:
   *
   *  A U B = S,
   *  |A| = |B|,
   *  sum(A) = sum(B),
   *  sum_squares(A) = sum_squares(B)
   *
   * """
   *
   * This model uses a binary matrix to represent the sets.
   *
   *
   * Also see http://www.hakank.org/or-tools/set_partition.py
   *
   */
  private static void Solve(int n=16, int num_sets=2)
  {

    Solver solver = new Solver("SetPartition");

    Console.WriteLine("n: {0}", n);
    Console.WriteLine("num_sets: {0}", num_sets);

    IEnumerable<int> Sets = Enumerable.Range(0, num_sets);
    IEnumerable<int> NRange = Enumerable.Range(0, n);


    //
    // Decision variables
    //
    IntVar[,] a = solver.MakeIntVarMatrix(num_sets, n, 0, 1, "a");
    IntVar[] a_flat = a.Flatten();


    //
    // Constraints
    //

    // partition set
    partition_sets(solver, a, num_sets, n);

    foreach(int i in Sets) {
      foreach(int j in Sets) {

        // same cardinality
        solver.Add(
                   (from k in NRange select a[i,k]).ToArray().Sum()
                   ==
                   (from k in NRange select a[j,k]).ToArray().Sum());

        // same sum
        solver.Add(
                   (from k in NRange select (k*a[i,k])).ToArray().Sum()
                   ==
                   (from k in NRange select (k*a[j,k])).ToArray().Sum());


        // same sum squared
        solver.Add(
                   (from k in NRange select (k*a[i,k]*k*a[i,k])).ToArray().Sum()
                   ==
                   (from k in NRange select (k*a[j,k]*k*a[j,k])).ToArray().Sum());
      }
    }


    // symmetry breaking for num_sets == 2
    if (num_sets == 2) {
      solver.Add(a[0,0] == 1);
    }

    //
    // Search
    //
    DecisionBuilder db = solver.MakePhase(a_flat,
                                          Solver.INT_VAR_DEFAULT,
                                          Solver.INT_VALUE_DEFAULT);

    solver.NewSearch(db);

    while (solver.NextSolution()) {

      int[,] a_val = new int[num_sets, n];
      foreach(int i in Sets) {
        foreach(int j in NRange) {
          a_val[i,j] = (int)a[i,j].Value();
        }
      }
      Console.WriteLine("sums: {0}",
                        (from j in NRange
                         select (j+1)*a_val[0,j]).ToArray().Sum());

      Console.WriteLine("sums squared: {0}",
                        (from j in NRange
                         select (int)Math.Pow((j+1)*a_val[0,j],2)).ToArray().Sum());

      // Show the numbers in each set
      foreach(int i in Sets) {
        if ( (from j in NRange select a_val[i,j]).ToArray().Sum() > 0 ) {
          Console.Write(i+1 + ": ");
          foreach(int j in NRange) {
            if (a_val[i,j] == 1) {
              Console.Write((j+1) + " ");
            }
          }
          Console.WriteLine();
        }
      }
      Console.WriteLine();

    }

    Console.WriteLine("\nSolutions: {0}", solver.Solutions());
    Console.WriteLine("WallTime: {0}ms", solver.WallTime());
    Console.WriteLine("Failures: {0}", solver.Failures());
    Console.WriteLine("Branches: {0} ", solver.Branches());

    solver.EndSearch();

  }

  public static void Main(String[] args)
  {
    int n = 16;
    int num_sets = 2;

    if (args.Length > 0) {
      n = Convert.ToInt32(args[0]);
    }

    if (args.Length > 1) {
      num_sets = Convert.ToInt32(args[1]);
    }

    if (n % num_sets == 0) {

      Solve(n, num_sets);
    } else {
      Console.WriteLine("n {0} num_sets {1}: Equal sets is not possible!",
                        n, num_sets);
    }
  }
}