network_routing_sat.cc 25.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// This model solves a multicommodity mono-routing problem with
// capacity constraints and a max usage cost structure.  This means
// that given a graph with capacity on edges, and a set of demands
// (source, destination, traffic), the goal is to assign one unique
// path for each demand such that the cost is minimized.  The cost is
// defined by the maximum ratio utilization (traffic/capacity) for all
// arcs.  There is also a penalty associated with an traffic of an arc
// being above the comfort zone, 85% of the capacity by default.
// Please note that constraint programming is well suited here because
// we cannot have multiple active paths for a single demand.
// Otherwise, a approach based on a linear solver is a better match.

// A random problem generator is also included.

#include <atomic>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/hash.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/map_util.h"
#include "ortools/base/random.h"
#include "ortools/graph/shortestpaths.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/model.h"
#include "ortools/util/time_limit.h"

// ----- Data Generator -----
DEFINE_int32(clients, 0,
             "Number of network clients nodes. If equal to zero, "
             "then all backbones nodes are also client nodes.");
DEFINE_int32(backbones, 0, "Number of backbone nodes");
DEFINE_int32(demands, 0, "Number of network demands.");
DEFINE_int32(traffic_min, 0, "Min traffic of a demand.");
DEFINE_int32(traffic_max, 0, "Max traffic of a demand.");
DEFINE_int32(min_client_degree, 0,
             "Min number of connections from a client to the backbone.");
DEFINE_int32(max_client_degree, 0,
             "Max number of connections from a client to the backbone.");
DEFINE_int32(min_backbone_degree, 0,
             "Min number of connections from a backbone node to the rest of "
             "the backbone nodes.");
DEFINE_int32(max_backbone_degree, 0,
             "Max number of connections from a backbone node to the rest of "
             "the backbone nodes.");
DEFINE_int32(max_capacity, 0, "Max traffic on any arc.");
DEFINE_int32(fixed_charge_cost, 0, "Fixed charged cost when using an arc.");
DEFINE_int32(seed, 0, "Random seed");

// ----- CP Model -----
DEFINE_double(comfort_zone, 0.85,
              "Above this limit in 1/1000th, the link is said to be "
              "congestioned.");
DEFINE_int32(extra_hops, 6,
             "When creating all paths for a demand, we look at paths with "
             "maximum length 'shortest path + extra_hops'");
DEFINE_int32(max_paths, 1200, "Max number of possible paths for a demand.");

// ----- Reporting -----
DEFINE_bool(print_model, false, "Print details of the model.");

// ----- Sat parameters -----
DEFINE_string(params, "", "Sat parameters.");

namespace operations_research {
namespace sat {
// ---------- Data and Data Generation ----------
static const int64 kDisconnectedDistance = -1LL;

// ----- Data -----
// Contains problem data. It assumes capacities are symmetrical:
//   (capacity(i->j) == capacity(j->i)).
// Demands are not symmetrical.
class NetworkRoutingData {
 public:
  NetworkRoutingData()
      : name_(""), num_nodes_(-1), max_capacity_(-1), fixed_charge_cost_(-1) {}

  // Name of the problem.
  const std::string &name() const { return name_; }

  // Properties of the model.
  int num_nodes() const { return num_nodes_; }

  int num_arcs() const { return all_arcs_.size(); }

  int num_demands() const { return all_demands_.size(); }

  // Returns the capacity of an arc, and 0 if the arc is not defined.
  int Capacity(int node1, int node2) const {
    return gtl::FindWithDefault(
        all_arcs_,
        std::make_pair(std::min(node1, node2), std::max(node1, node2)), 0);
  }

  // Returns the demand between the source and the destination, and 0 if
  // there are no demands between the source and the destination.
  int Demand(int source, int destination) const {
    return gtl::FindWithDefault(all_demands_,
                                std::make_pair(source, destination), 0);
  }

  // External building API.
  void set_num_nodes(int num_nodes) { num_nodes_ = num_nodes; }
  void AddArc(int node1, int node2, int capacity) {
    all_arcs_[std::make_pair(std::min(node1, node2), std::max(node1, node2))] =
        capacity;
  }
  void AddDemand(int source, int destination, int traffic) {
    all_demands_[std::make_pair(source, destination)] = traffic;
  }
  void set_name(const std::string &name) { name_ = name; }
  void set_max_capacity(int max_capacity) { max_capacity_ = max_capacity; }
  void set_fixed_charge_cost(int cost) { fixed_charge_cost_ = cost; }

 private:
  std::string name_;
  int num_nodes_;
  int max_capacity_;
  int fixed_charge_cost_;
  std::unordered_map<std::pair<int, int>, int> all_arcs_;
  std::unordered_map<std::pair<int, int>, int> all_demands_;
};

// ----- Data Generation -----

// Random generator of problem. This generator creates a random
// problem. This problem uses a special topology. There are
// 'num_backbones' nodes and 'num_clients' nodes. if 'num_clients' is
// null, then all backbones nodes are also client nodes. All traffic
// originates and terminates in client nodes. Each client node is
// connected to 'min_client_degree' - 'max_client_degree' backbone
// nodes. Each backbone node is connected to 'min_backbone_degree' -
// 'max_backbone_degree' other backbone nodes. There are 'num_demands'
// demands, with a traffic between 'traffic_min' and 'traffic_max'.
// Each arc has a capacity of 'max_capacity'. Using an arc incurs a
// fixed cost of 'fixed_charge_cost'.
class NetworkRoutingDataBuilder {
 public:
  NetworkRoutingDataBuilder() : random_(0) {}

  void BuildModelFromParameters(int num_clients, int num_backbones,
                                int num_demands, int traffic_min,
                                int traffic_max, int min_client_degree,
                                int max_client_degree, int min_backbone_degree,
                                int max_backbone_degree, int max_capacity,
                                int fixed_charge_cost, int seed,
                                NetworkRoutingData *const data) {
    CHECK_GE(num_backbones, 1);
    CHECK_GE(num_clients, 0);
    CHECK_GE(num_demands, 1);
    CHECK_LE(num_demands, num_clients == 0 ? num_backbones * num_backbones
                                           : num_clients * num_backbones);
    CHECK_GE(max_client_degree, min_client_degree);
    CHECK_GE(max_backbone_degree, min_backbone_degree);
    CHECK_GE(traffic_max, 1);
    CHECK_GE(traffic_max, traffic_min);
    CHECK_GE(traffic_min, 1);
    CHECK_GE(max_backbone_degree, 2);
    CHECK_GE(max_client_degree, 2);
    CHECK_LE(max_client_degree, num_backbones);
    CHECK_LE(max_backbone_degree, num_backbones);
    CHECK_GE(max_capacity, 1);

    const int size = num_backbones + num_clients;
    InitData(size, seed);
    BuildGraph(num_clients, num_backbones, min_client_degree, max_client_degree,
               min_backbone_degree, max_backbone_degree);
    CreateDemands(num_clients, num_backbones, num_demands, traffic_min,
                  traffic_max, data);
    FillData(num_clients, num_backbones, num_demands, traffic_min, traffic_max,
             min_client_degree, max_client_degree, min_backbone_degree,
             max_backbone_degree, max_capacity, fixed_charge_cost, seed, data);
  }

 private:
  void InitData(int size, int seed) {
    network_.clear();
    network_.resize(size);
    for (int i = 0; i < size; ++i) {
      network_[i].resize(size, false);
    }
    degrees_.clear();
    degrees_.resize(size, 0);
    random_.Reset(seed);
  }

  void BuildGraph(int num_clients, int num_backbones, int min_client_degree,
                  int max_client_degree, int min_backbone_degree,
                  int max_backbone_degree) {
    const int size = num_backbones + num_clients;

    // First we create the backbone nodes.
    for (int i = 1; i < num_backbones; ++i) {
      int j = random_.Uniform(i);
      CHECK_LT(j, i);
      AddEdge(i, j);
    }

    std::unordered_set<int> to_complete;
    std::unordered_set<int> not_full;
    for (int i = 0; i < num_backbones; ++i) {
      if (degrees_[i] < min_backbone_degree) {
        to_complete.insert(i);
      }
      if (degrees_[i] < max_backbone_degree) {
        not_full.insert(i);
      }
    }
    while (!to_complete.empty() && not_full.size() > 1) {
      const int node1 = *(to_complete.begin());
      int node2 = node1;
      while (node2 == node1 || degrees_[node2] >= max_backbone_degree) {
        node2 = random_.Uniform(num_backbones);
      }
      AddEdge(node1, node2);
      if (degrees_[node1] >= min_backbone_degree) {
        to_complete.erase(node1);
      }
      if (degrees_[node2] >= min_backbone_degree) {
        to_complete.erase(node2);
      }
      if (degrees_[node1] >= max_backbone_degree) {
        not_full.erase(node1);
      }
      if (degrees_[node2] >= max_backbone_degree) {
        not_full.erase(node2);
      }
    }

    // Then create the client nodes connected to the backbone nodes.
    // If num_client is 0, then backbone nodes are also client nodes.
    for (int i = num_backbones; i < size; ++i) {
      const int degree = RandomInInterval(min_client_degree, max_client_degree);
      while (degrees_[i] < degree) {
        const int j = random_.Uniform(num_backbones);
        if (!network_[i][j]) {
          AddEdge(i, j);
        }
      }
    }
  }

  void CreateDemands(int num_clients, int num_backbones, int num_demands,
                     int traffic_min, int traffic_max,
                     NetworkRoutingData *const data) {
    while (data->num_demands() < num_demands) {
      const int source = RandomClient(num_clients, num_backbones);
      int dest = source;
      while (dest == source) {
        dest = RandomClient(num_clients, num_backbones);
      }
      const int traffic = RandomInInterval(traffic_min, traffic_max);
      data->AddDemand(source, dest, traffic);
    }
  }

  void FillData(int num_clients, int num_backbones, int num_demands,
                int traffic_min, int traffic_max, int min_client_degree,
                int max_client_degree, int min_backbone_degree,
                int max_backbone_degree, int max_capacity,
                int fixed_charge_cost, int seed,
                NetworkRoutingData *const data) {
    const int size = num_backbones + num_clients;

    const std::string name = absl::StrFormat(
        "mp_c%i_b%i_d%i.t%i-%i.cd%i-%i.bd%i-%i.mc%i.fc%i.s%i", num_clients,
        num_backbones, num_demands, traffic_min, traffic_max, min_client_degree,
        max_client_degree, min_backbone_degree, max_backbone_degree,
        max_capacity, fixed_charge_cost, seed);
    data->set_name(name);

    data->set_num_nodes(size);
    int num_arcs = 0;
    for (int i = 0; i < size - 1; ++i) {
      for (int j = i + 1; j < size; ++j) {
        if (network_[i][j]) {
          data->AddArc(i, j, max_capacity);
          num_arcs++;
        }
      }
    }
    data->set_max_capacity(max_capacity);
    data->set_fixed_charge_cost(fixed_charge_cost);
  }

  void AddEdge(int i, int j) {
    degrees_[i]++;
    degrees_[j]++;
    network_[i][j] = true;
    network_[j][i] = true;
  }

  int RandomInInterval(int interval_min, int interval_max) {
    CHECK_LE(interval_min, interval_max);
    return random_.Uniform(interval_max - interval_min + 1) + interval_min;
  }

  int RandomClient(int num_clients, int num_backbones) {
    return (num_clients == 0) ? random_.Uniform(num_backbones)
                              : random_.Uniform(num_clients) + num_backbones;
  }

  std::vector<std::vector<bool>> network_;
  std::vector<int> degrees_;
  MTRandom random_;
};

// ---------- Solving the Problem ----------

// Useful data struct to hold demands.
struct Demand {
 public:
  Demand(int the_source, int the_destination, int the_traffic)
      : source(the_source),
        destination(the_destination),
        traffic(the_traffic) {}
  int source;
  int destination;
  int traffic;
};

class NetworkRoutingSolver {
 public:
  typedef std::unordered_set<int> OnePath;

  NetworkRoutingSolver() : num_nodes_(-1) {}

  void ComputeAllPathsForOneDemandAndOnePathLength(int demand_index,
                                                   int max_length,
                                                   int max_paths) {
    // We search for paths of length exactly 'max_length'.
    CpModelBuilder cp_model;
    std::vector<IntVar> arc_vars;
    std::vector<IntVar> node_vars;
    for (int i = 0; i < max_length; ++i) {
      node_vars.push_back(cp_model.NewIntVar(Domain(0, num_nodes_ - 1)));
    }
    for (int i = 0; i < max_length - 1; ++i) {
      arc_vars.push_back(cp_model.NewIntVar(Domain(-1, count_arcs() - 1)));
    }

    for (int i = 0; i < max_length - 1; ++i) {
      std::vector<IntVar> tmp_vars;
      tmp_vars.push_back(node_vars[i]);
      tmp_vars.push_back(node_vars[i + 1]);
      tmp_vars.push_back(arc_vars[i]);
      TableConstraint table = cp_model.AddAllowedAssignments(
          {node_vars[i], node_vars[i + 1], arc_vars[i]});
      for (const auto &tuple : arcs_data_) {
        table.AddTuple(tuple);
      }
    }

    const Demand &demand = demands_array_[demand_index];
    cp_model.AddEquality(node_vars[0], demand.source);
    cp_model.AddEquality(node_vars[max_length - 1], demand.destination);
    cp_model.AddAllDifferent(arc_vars);
    cp_model.AddAllDifferent(node_vars);

    Model model;
    // Create an atomic Boolean that will be periodically checked by the limit.
    std::atomic<bool> stopped(false);
    model.GetOrCreate<TimeLimit>()->RegisterExternalBooleanAsLimit(&stopped);

    model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse &r) {
      const int path_id = all_paths_[demand_index].size();
      all_paths_[demand_index].resize(path_id + 1);
      for (int arc_index = 0; arc_index < max_length - 1; ++arc_index) {
        const int arc = SolutionIntegerValue(r, arc_vars[arc_index]);
        all_paths_[demand_index].back().insert(arc);
      }
      if (all_paths_[demand_index].size() >= max_paths) {
        stopped = true;
      }
    }));

    SatParameters parameters;
    parameters.set_enumerate_all_solutions(true);
    model.Add(NewSatParameters(parameters));

    SolveCpModel(cp_model.Build(), &model);
  }

  // This method will fill the all_paths_ data structure. all_paths
  // contains, for each demand, a vector of possible paths, stored as
  // a hash_set of arc indices.
  int ComputeAllPaths(int extra_hops, int max_paths) {
    int num_paths = 0;
    for (int demand_index = 0; demand_index < demands_array_.size();
         ++demand_index) {
      const int min_path_length = all_min_path_lengths_[demand_index];
      for (int max_length = min_path_length + 1;
           max_length <= min_path_length + extra_hops + 1; ++max_length) {
        ComputeAllPathsForOneDemandAndOnePathLength(demand_index, max_length,
                                                    max_paths);
        if (all_paths_[demand_index].size() >= max_paths) {
          break;
        }
      }
      num_paths += all_paths_[demand_index].size();
    }
    return num_paths;
  }

  void AddArcData(int64 source, int64 destination, int arc_id) {
    arcs_data_.push_back({source, destination, arc_id});
  }

  void InitArcInfo(const NetworkRoutingData &data) {
    const int num_arcs = data.num_arcs();
    capacity_.clear();
    capacity_.resize(num_nodes_);
    for (int node_index = 0; node_index < num_nodes_; ++node_index) {
      capacity_[node_index].resize(num_nodes_, 0);
    }
    int arc_id = 0;
    for (int i = 0; i < num_nodes_ - 1; ++i) {
      for (int j = i + 1; j < num_nodes_; ++j) {
        const int capacity = data.Capacity(i, j);
        if (capacity > 0) {
          AddArcData(i, j, arc_id);
          AddArcData(j, i, arc_id);
          arc_id++;
          arc_capacity_.push_back(capacity);
          capacity_[i][j] = capacity;
          capacity_[j][i] = capacity;
          if (FLAGS_print_model) {
            LOG(INFO) << "Arc " << i << " <-> " << j << " with capacity "
                      << capacity;
          }
        }
      }
    }
    CHECK_EQ(arc_id, num_arcs);
  }

  int InitDemandInfo(const NetworkRoutingData &data) {
    const int num_demands = data.num_demands();
    int total_demand = 0;
    for (int i = 0; i < num_nodes_; ++i) {
      for (int j = 0; j < num_nodes_; ++j) {
        const int traffic = data.Demand(i, j);
        if (traffic > 0) {
          demands_array_.push_back(Demand(i, j, traffic));
          total_demand += traffic;
        }
      }
    }
    CHECK_EQ(num_demands, demands_array_.size());
    return total_demand;
  }

  int64 InitShortestPaths(const NetworkRoutingData &data) {
    const int num_demands = data.num_demands();
    int64 total_cumulated_traffic = 0;
    all_min_path_lengths_.clear();
    std::vector<int> paths;
    for (int demand_index = 0; demand_index < num_demands; ++demand_index) {
      paths.clear();
      const Demand &demand = demands_array_[demand_index];
      CHECK(DijkstraShortestPath(num_nodes_, demand.source, demand.destination,
                                 [this](int x, int y) { return HasArc(x, y); },
                                 kDisconnectedDistance, &paths));
      all_min_path_lengths_.push_back(paths.size() - 1);
    }

    for (int i = 0; i < num_demands; ++i) {
      const int min_path_length = all_min_path_lengths_[i];
      total_cumulated_traffic += min_path_length * demands_array_[i].traffic;
    }
    return total_cumulated_traffic;
  }

  int InitPaths(const NetworkRoutingData &data, int extra_hops, int max_paths) {
    const int num_demands = data.num_demands();
    LOG(INFO) << "Computing all possible paths ";
    LOG(INFO) << "  - extra hops = " << extra_hops;
    LOG(INFO) << "  - max paths per demand = " << max_paths;

    all_paths_.clear();
    all_paths_.resize(num_demands);
    const int num_paths = ComputeAllPaths(extra_hops, max_paths);
    for (int demand_index = 0; demand_index < num_demands; ++demand_index) {
      const Demand &demand = demands_array_[demand_index];
      LOG(INFO) << "Demand from " << demand.source << " to "
                << demand.destination << " with traffic " << demand.traffic
                << ", and " << all_paths_[demand_index].size()
                << " possible paths.";
    }
    return num_paths;
  }

  void Init(const NetworkRoutingData &data, int extra_hops, int max_paths) {
    LOG(INFO) << "Model " << data.name();
    num_nodes_ = data.num_nodes();
    const int num_arcs = data.num_arcs();
    const int num_demands = data.num_demands();

    InitArcInfo(data);
    const int total_demand = InitDemandInfo(data);
    const int64 total_cumulated_traffic = InitShortestPaths(data);
    const int num_paths = InitPaths(data, extra_hops, max_paths);

    // ----- Report Problem Sizes -----

    LOG(INFO) << "Model created:";
    LOG(INFO) << "  - " << num_nodes_ << " nodes";
    LOG(INFO) << "  - " << num_arcs << " arcs";
    LOG(INFO) << "  - " << num_demands << " demands";
    LOG(INFO) << "  - a total traffic of " << total_demand;
    LOG(INFO) << "  - a minimum cumulated traffic of "
              << total_cumulated_traffic;
    LOG(INFO) << "  - " << num_paths << " possible paths for all demands";
  }

  // ----- Callback for Dijkstra Shortest Path -----

  int64 HasArc(int i, int j) {
    if (capacity_[i][j] > 0) {
      return 1;
    } else {
      return kDisconnectedDistance;  // disconnected distance.
    }
  }

  // ----- Main Solve routine -----

  int64 Solve() {
    LOG(INFO) << "Solving model";
    const int num_demands = demands_array_.size();
    const int num_arcs = count_arcs();

    // ----- Build Model -----
    CpModelBuilder cp_model;
    std::vector<std::vector<IntVar>> path_vars(num_demands);

    // Node - Graph Constraint.
    for (int demand_index = 0; demand_index < num_demands; ++demand_index) {
      for (int arc = 0; arc < num_arcs; ++arc) {
        path_vars[demand_index].push_back(cp_model.NewBoolVar());
      }
      // Fill Tuple Set for AllowedAssignment constraint.
      TableConstraint path_ct =
          cp_model.AddAllowedAssignments(path_vars[demand_index]);
      for (const auto &one_path : all_paths_[demand_index]) {
        std::vector<int64> tuple(count_arcs(), 0);
        for (const int arc : one_path) {
          tuple[arc] = 1;
        }
        path_ct.AddTuple(tuple);
      }
    }
    // Traffic variables and objective definition.
    std::vector<IntVar> traffic_vars(num_arcs);
    std::vector<IntVar> normalized_traffic_vars(num_arcs);
    std::vector<BoolVar> comfortable_traffic_vars(num_arcs);
    int64 max_normalized_traffic = 0;
    for (int arc_index = 0; arc_index < num_arcs; ++arc_index) {
      int64 sum_of_traffic = 0;
      LinearExpr traffic_expr;
      for (int i = 0; i < path_vars.size(); ++i) {
        sum_of_traffic += demands_array_[i].traffic;
        traffic_expr.AddTerm(path_vars[i][arc_index],
                             demands_array_[i].traffic);
      }
      const IntVar traffic_var = cp_model.NewIntVar(Domain(0, sum_of_traffic));
      traffic_vars[arc_index] = traffic_var;
      cp_model.AddEquality(traffic_expr, traffic_var);

      const int64 capacity = arc_capacity_[arc_index];
      IntVar scaled_traffic =
          cp_model.NewIntVar(Domain(0, sum_of_traffic * 1000));
      cp_model.AddEquality(LinearExpr::ScalProd({traffic_var}, {1000}),
                           scaled_traffic);
      IntVar normalized_traffic =
          cp_model.NewIntVar(Domain(0, sum_of_traffic * 1000 / capacity));
      max_normalized_traffic =
          std::max(max_normalized_traffic, sum_of_traffic * 1000 / capacity);
      cp_model.AddDivisionEquality(normalized_traffic, scaled_traffic,
                                   cp_model.NewConstant(capacity));
      normalized_traffic_vars[arc_index] = normalized_traffic;
      const BoolVar comfort = cp_model.NewBoolVar();
      const int64 safe_capacity =
          static_cast<int64>(capacity * FLAGS_comfort_zone);
      cp_model.AddGreaterThan(traffic_var, safe_capacity)
          .OnlyEnforceIf(comfort);
      cp_model.AddLessOrEqual(traffic_var, safe_capacity)
          .OnlyEnforceIf(Not(comfort));
      comfortable_traffic_vars[arc_index] = comfort;
    }

    const IntVar max_usage_cost =
        cp_model.NewIntVar(Domain(0, max_normalized_traffic));
    cp_model.AddMaxEquality(max_usage_cost, normalized_traffic_vars);

    LinearExpr objective_expr;
    objective_expr.AddVar(max_usage_cost);
    for (const BoolVar var : comfortable_traffic_vars) {
      objective_expr.AddVar(var);
    }
    cp_model.Minimize(objective_expr);

    Model model;
    if (!FLAGS_params.empty()) {
      model.Add(NewSatParameters(FLAGS_params));
    }
    int num_solutions = 0;
    model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse &r) {
      LOG(INFO) << "Solution " << num_solutions;
      const double objective_value = r.objective_value();
      const double percent = SolutionIntegerValue(r, max_usage_cost) / 10.0;
      int num_non_comfortable_arcs = 0;
      for (const BoolVar comfort : comfortable_traffic_vars) {
        num_non_comfortable_arcs += SolutionBooleanValue(r, comfort);
      }
      if (num_non_comfortable_arcs > 0) {
        LOG(INFO) << "*** Found a solution with a max usage of " << percent
                  << "%, and " << num_non_comfortable_arcs
                  << " links above the comfort zone";
      } else {
        LOG(INFO) << "*** Found a solution with a max usage of " << percent
                  << "%";
      }
      num_solutions++;
    }));
    const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
    return response.objective_value();
  }

 private:
  int count_arcs() const { return arcs_data_.size() / 2; }

  std::vector<std::vector<int64>> arcs_data_;
  std::vector<int> arc_capacity_;
  std::vector<Demand> demands_array_;
  int num_nodes_;
  std::vector<int64> all_min_path_lengths_;
  std::vector<std::vector<int>> capacity_;
  std::vector<std::vector<OnePath>> all_paths_;
};

}  // namespace sat
}  // namespace operations_research

int main(int argc, char **argv) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  operations_research::sat::NetworkRoutingData data;
  operations_research::sat::NetworkRoutingDataBuilder builder;
  builder.BuildModelFromParameters(
      FLAGS_clients, FLAGS_backbones, FLAGS_demands, FLAGS_traffic_min,
      FLAGS_traffic_max, FLAGS_min_client_degree, FLAGS_max_client_degree,
      FLAGS_min_backbone_degree, FLAGS_max_backbone_degree, FLAGS_max_capacity,
      FLAGS_fixed_charge_cost, FLAGS_seed, &data);
  operations_research::sat::NetworkRoutingSolver solver;
  solver.Init(data, FLAGS_extra_hops, FLAGS_max_paths);
  LOG(INFO) << "Final cost = " << solver.Solve();
  return EXIT_SUCCESS;
}