linear_programming_example.cc 2.64 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// [START program]
// [START import]
#include <iostream>
#include "ortools/linear_solver/linear_solver.h"
// [END import]

namespace operations_research {
void LinearProgrammingExample() {
  // [START solver]
  MPSolver solver("LinearExample", MPSolver::GLOP_LINEAR_PROGRAMMING);
  // [END solver]

  // [START variables]
  const double infinity = solver.infinity();
  // x and y are non-negative variables.
  MPVariable* const x = solver.MakeNumVar(0.0, infinity, "x");
  MPVariable* const y = solver.MakeNumVar(0.0, infinity, "y");
  LOG(INFO) << "Number of variables = " << solver.NumVariables();
  // [END variables]

  // [START constraints]
  // x + 2*y <= 14.
  MPConstraint* const c0 = solver.MakeRowConstraint(-infinity, 14.0);
  c0->SetCoefficient(x, 1);
  c0->SetCoefficient(y, 2);

  // 3*x - y >= 0.
  MPConstraint* const c1 = solver.MakeRowConstraint(0.0, infinity);
  c1->SetCoefficient(x, 3);
  c1->SetCoefficient(y, -1);

  // x - y <= 2.
  MPConstraint* const c2 = solver.MakeRowConstraint(-infinity, 2.0);
  c2->SetCoefficient(x, 1);
  c2->SetCoefficient(y, -1);
  LOG(INFO) << "Number of constraints = " << solver.NumConstraints();
  // [END constraints]

  // [START objective]
  // Objective function: 3x + 4y.
  MPObjective* const objective = solver.MutableObjective();
  objective->SetCoefficient(x, 3);
  objective->SetCoefficient(y, 4);
  objective->SetMaximization();
  // [END objective]

  // [START solve]
  const MPSolver::ResultStatus result_status = solver.Solve();
  // Check that the problem has an optimal solution.
  if (result_status != MPSolver::OPTIMAL) {
    LOG(FATAL) << "The problem does not have an optimal solution!";
  }
  // [END solve]

  // [START print_solution]
  LOG(INFO) << "Solution:";
  LOG(INFO) << "Optimal objective value = " << objective->Value();
  LOG(INFO) << x->name() << " = " << x->solution_value();
  LOG(INFO) << y->name() << " = " << y->solution_value();
  // [END print_solution]
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::LinearProgrammingExample();
  return EXIT_SUCCESS;
}
// [END program]