TransverseMercatorExact.cpp 17.1 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/**
 * \file TransverseMercatorExact.cpp
 * \brief Implementation for GeographicLib::TransverseMercatorExact class
 *
 * Copyright (c) Charles Karney (2008-2017) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 *
 * The relevant section of Lee's paper is part V, pp 67--101,
 * <a href="https://doi.org/10.3138/X687-1574-4325-WM62">Conformal
 * Projections Based On Jacobian Elliptic Functions</a>.
 *
 * The method entails using the Thompson Transverse Mercator as an
 * intermediate projection.  The projections from the intermediate
 * coordinates to [\e phi, \e lam] and [\e x, \e y] are given by elliptic
 * functions.  The inverse of these projections are found by Newton's method
 * with a suitable starting guess.
 *
 * This implementation and notation closely follows Lee, with the following
 * exceptions:
 * <center><table>
 * <tr><th>Lee    <th>here    <th>Description
 * <tr><td>x/a    <td>xi      <td>Northing (unit Earth)
 * <tr><td>y/a    <td>eta     <td>Easting (unit Earth)
 * <tr><td>s/a    <td>sigma   <td>xi + i * eta
 * <tr><td>y      <td>x       <td>Easting
 * <tr><td>x      <td>y       <td>Northing
 * <tr><td>k      <td>e       <td>eccentricity
 * <tr><td>k^2    <td>mu      <td>elliptic function parameter
 * <tr><td>k'^2   <td>mv      <td>elliptic function complementary parameter
 * <tr><td>m      <td>k       <td>scale
 * <tr><td>zeta   <td>zeta    <td>complex longitude = Mercator = chi in paper
 * <tr><td>s      <td>sigma   <td>complex GK = zeta in paper
 * </table></center>
 *
 * Minor alterations have been made in some of Lee's expressions in an
 * attempt to control round-off.  For example atanh(sin(phi)) is replaced by
 * asinh(tan(phi)) which maintains accuracy near phi = pi/2.  Such changes
 * are noted in the code.
 **********************************************************************/

#include <GeographicLib/TransverseMercatorExact.hpp>

#if defined(_MSC_VER)
// Squelch warnings about constant conditional expressions
#  pragma warning (disable: 4127)
#endif

namespace GeographicLib {

  using namespace std;

  TransverseMercatorExact::TransverseMercatorExact(real a, real f, real k0,
                                                   bool extendp)
    : tol_(numeric_limits<real>::epsilon())
    , tol2_(real(0.1) * tol_)
    , taytol_(pow(tol_, real(0.6)))
    , _a(a)
    , _f(f)
    , _k0(k0)
    , _mu(_f * (2 - _f))        // e^2
    , _mv(1 - _mu)              // 1 - e^2
    , _e(sqrt(_mu))
    , _extendp(extendp)
    , _Eu(_mu)
    , _Ev(_mv)
  {
    if (!(Math::isfinite(_a) && _a > 0))
      throw GeographicErr("Equatorial radius is not positive");
    if (!(_f > 0))
      throw GeographicErr("Flattening is not positive");
    if (!(_f < 1))
      throw GeographicErr("Polar semi-axis is not positive");
    if (!(Math::isfinite(_k0) && _k0 > 0))
      throw GeographicErr("Scale is not positive");
  }

  const TransverseMercatorExact& TransverseMercatorExact::UTM() {
    static const TransverseMercatorExact utm(Constants::WGS84_a(),
                                             Constants::WGS84_f(),
                                             Constants::UTM_k0());
    return utm;
  }

  void TransverseMercatorExact::zeta(real /*u*/, real snu, real cnu, real dnu,
                                     real /*v*/, real snv, real cnv, real dnv,
                                     real& taup, real& lam) const {
    // Lee 54.17 but write
    // atanh(snu * dnv) = asinh(snu * dnv / sqrt(cnu^2 + _mv * snu^2 * snv^2))
    // atanh(_e * snu / dnv) =
    //         asinh(_e * snu / sqrt(_mu * cnu^2 + _mv * cnv^2))
    // Overflow value s.t. atan(overflow) = pi/2
    static const real
      overflow = 1 / Math::sq(std::numeric_limits<real>::epsilon());
    real
      d1 = sqrt(Math::sq(cnu) + _mv * Math::sq(snu * snv)),
      d2 = sqrt(_mu * Math::sq(cnu) + _mv * Math::sq(cnv)),
      t1 = (d1 != 0 ? snu * dnv / d1 : (snu < 0 ? -overflow : overflow)),
      t2 = (d2 != 0 ? sinh( _e * Math::asinh(_e * snu / d2) ) :
            (snu < 0 ? -overflow : overflow));
    // psi = asinh(t1) - asinh(t2)
    // taup = sinh(psi)
    taup = t1 * Math::hypot(real(1), t2) - t2 * Math::hypot(real(1), t1);
    lam = (d1 != 0 && d2 != 0) ?
      atan2(dnu * snv, cnu * cnv) - _e * atan2(_e * cnu * snv, dnu * cnv) :
      0;
  }

  void TransverseMercatorExact::dwdzeta(real /*u*/,
                                        real snu, real cnu, real dnu,
                                        real /*v*/,
                                        real snv, real cnv, real dnv,
                                        real& du, real& dv) const {
    // Lee 54.21 but write (1 - dnu^2 * snv^2) = (cnv^2 + _mu * snu^2 * snv^2)
    // (see A+S 16.21.4)
    real d = _mv * Math::sq(Math::sq(cnv) + _mu * Math::sq(snu * snv));
    du =  cnu * dnu * dnv * (Math::sq(cnv) - _mu * Math::sq(snu * snv)) / d;
    dv = -snu * snv * cnv * (Math::sq(dnu * dnv) + _mu * Math::sq(cnu)) / d;
  }

  // Starting point for zetainv
  bool TransverseMercatorExact::zetainv0(real psi, real lam,
                                         real& u, real& v) const {
    bool retval = false;
    if (psi < -_e * Math::pi()/4 &&
        lam > (1 - 2 * _e) * Math::pi()/2 &&
        psi < lam - (1 - _e) * Math::pi()/2) {
      // N.B. this branch is normally not taken because psi < 0 is converted
      // psi > 0 by Forward.
      //
      // There's a log singularity at w = w0 = Eu.K() + i * Ev.K(),
      // corresponding to the south pole, where we have, approximately
      //
      //   psi = _e + i * pi/2 - _e * atanh(cos(i * (w - w0)/(1 + _mu/2)))
      //
      // Inverting this gives:
      real
        psix = 1 - psi / _e,
        lamx = (Math::pi()/2 - lam) / _e;
      u = Math::asinh(sin(lamx) / Math::hypot(cos(lamx), sinh(psix))) *
        (1 + _mu/2);
      v = atan2(cos(lamx), sinh(psix)) * (1 + _mu/2);
      u = _Eu.K() - u;
      v = _Ev.K() - v;
    } else if (psi < _e * Math::pi()/2 &&
               lam > (1 - 2 * _e) * Math::pi()/2) {
      // At w = w0 = i * Ev.K(), we have
      //
      //     zeta = zeta0 = i * (1 - _e) * pi/2
      //     zeta' = zeta'' = 0
      //
      // including the next term in the Taylor series gives:
      //
      // zeta = zeta0 - (_mv * _e) / 3 * (w - w0)^3
      //
      // When inverting this, we map arg(w - w0) = [-90, 0] to
      // arg(zeta - zeta0) = [-90, 180]
      real
        dlam = lam - (1 - _e) * Math::pi()/2,
        rad = Math::hypot(psi, dlam),
        // atan2(dlam-psi, psi+dlam) + 45d gives arg(zeta - zeta0) in range
        // [-135, 225).  Subtracting 180 (since multiplier is negative) makes
        // range [-315, 45).  Multiplying by 1/3 (for cube root) gives range
        // [-105, 15).  In particular the range [-90, 180] in zeta space maps
        // to [-90, 0] in w space as required.
        ang = atan2(dlam-psi, psi+dlam) - real(0.75) * Math::pi();
      // Error using this guess is about 0.21 * (rad/e)^(5/3)
      retval = rad < _e * taytol_;
      rad = Math::cbrt(3 / (_mv * _e) * rad);
      ang /= 3;
      u = rad * cos(ang);
      v = rad * sin(ang) + _Ev.K();
    } else {
      // Use spherical TM, Lee 12.6 -- writing atanh(sin(lam) / cosh(psi)) =
      // asinh(sin(lam) / hypot(cos(lam), sinh(psi))).  This takes care of the
      // log singularity at zeta = Eu.K() (corresponding to the north pole)
      v = Math::asinh(sin(lam) / Math::hypot(cos(lam), sinh(psi)));
      u = atan2(sinh(psi), cos(lam));
      // But scale to put 90,0 on the right place
      u *= _Eu.K() / (Math::pi()/2);
      v *= _Eu.K() / (Math::pi()/2);
    }
    return retval;
  }

  // Invert zeta using Newton's method
  void TransverseMercatorExact::zetainv(real taup, real lam,
                                        real& u, real& v) const  {
    real
      psi = Math::asinh(taup),
      scal = 1/Math::hypot(real(1), taup);
    if (zetainv0(psi, lam, u, v))
      return;
    real stol2 = tol2_ / Math::sq(max(psi, real(1)));
    // min iterations = 2, max iterations = 6; mean = 4.0
    for (int i = 0, trip = 0; i < numit_ || GEOGRAPHICLIB_PANIC; ++i) {
      real snu, cnu, dnu, snv, cnv, dnv;
      _Eu.sncndn(u, snu, cnu, dnu);
      _Ev.sncndn(v, snv, cnv, dnv);
      real tau1, lam1, du1, dv1;
      zeta(u, snu, cnu, dnu, v, snv, cnv, dnv, tau1, lam1);
      dwdzeta(u, snu, cnu, dnu, v, snv, cnv, dnv, du1, dv1);
      tau1 -= taup;
      lam1 -= lam;
      tau1 *= scal;
      real
        delu = tau1 * du1 - lam1 * dv1,
        delv = tau1 * dv1 + lam1 * du1;
      u -= delu;
      v -= delv;
      if (trip)
        break;
      real delw2 = Math::sq(delu) + Math::sq(delv);
      if (!(delw2 >= stol2))
        ++trip;
    }
  }

  void TransverseMercatorExact::sigma(real /*u*/, real snu, real cnu, real dnu,
                                      real v, real snv, real cnv, real dnv,
                                      real& xi, real& eta) const {
    // Lee 55.4 writing
    // dnu^2 + dnv^2 - 1 = _mu * cnu^2 + _mv * cnv^2
    real d = _mu * Math::sq(cnu) + _mv * Math::sq(cnv);
    xi = _Eu.E(snu, cnu, dnu) - _mu * snu * cnu * dnu / d;
    eta = v - _Ev.E(snv, cnv, dnv) + _mv * snv * cnv * dnv / d;
  }

  void TransverseMercatorExact::dwdsigma(real /*u*/,
                                         real snu, real cnu, real dnu,
                                         real /*v*/,
                                         real snv, real cnv, real dnv,
                                         real& du, real& dv) const {
    // Reciprocal of 55.9: dw/ds = dn(w)^2/_mv, expanding complex dn(w) using
    // A+S 16.21.4
    real d = _mv * Math::sq(Math::sq(cnv) + _mu * Math::sq(snu * snv));
    real
      dnr = dnu * cnv * dnv,
      dni = - _mu * snu * cnu * snv;
    du = (Math::sq(dnr) - Math::sq(dni)) / d;
    dv = 2 * dnr * dni / d;
  }

  // Starting point for sigmainv
  bool TransverseMercatorExact::sigmainv0(real xi, real eta,
                                          real& u, real& v) const {
    bool retval = false;
    if (eta > real(1.25) * _Ev.KE() ||
        (xi < -real(0.25) * _Eu.E() && xi < eta - _Ev.KE())) {
      // sigma as a simple pole at w = w0 = Eu.K() + i * Ev.K() and sigma is
      // approximated by
      //
      // sigma = (Eu.E() + i * Ev.KE()) + 1/(w - w0)
      real
        x = xi - _Eu.E(),
        y = eta - _Ev.KE(),
        r2 = Math::sq(x) + Math::sq(y);
      u = _Eu.K() + x/r2;
      v = _Ev.K() - y/r2;
    } else if ((eta > real(0.75) * _Ev.KE() && xi < real(0.25) * _Eu.E())
               || eta > _Ev.KE()) {
      // At w = w0 = i * Ev.K(), we have
      //
      //     sigma = sigma0 = i * Ev.KE()
      //     sigma' = sigma'' = 0
      //
      // including the next term in the Taylor series gives:
      //
      // sigma = sigma0 - _mv / 3 * (w - w0)^3
      //
      // When inverting this, we map arg(w - w0) = [-pi/2, -pi/6] to
      // arg(sigma - sigma0) = [-pi/2, pi/2]
      // mapping arg = [-pi/2, -pi/6] to [-pi/2, pi/2]
      real
        deta = eta - _Ev.KE(),
        rad = Math::hypot(xi, deta),
        // Map the range [-90, 180] in sigma space to [-90, 0] in w space.  See
        // discussion in zetainv0 on the cut for ang.
        ang = atan2(deta-xi, xi+deta) - real(0.75) * Math::pi();
      // Error using this guess is about 0.068 * rad^(5/3)
      retval = rad < 2 * taytol_;
      rad = Math::cbrt(3 / _mv * rad);
      ang /= 3;
      u = rad * cos(ang);
      v = rad * sin(ang) + _Ev.K();
    } else {
      // Else use w = sigma * Eu.K/Eu.E (which is correct in the limit _e -> 0)
      u = xi * _Eu.K()/_Eu.E();
      v = eta * _Eu.K()/_Eu.E();
    }
    return retval;
  }

  // Invert sigma using Newton's method
  void TransverseMercatorExact::sigmainv(real xi, real eta,
                                         real& u, real& v) const {
    if (sigmainv0(xi, eta, u, v))
      return;
    // min iterations = 2, max iterations = 7; mean = 3.9
    for (int i = 0, trip = 0; i < numit_ || GEOGRAPHICLIB_PANIC; ++i) {
      real snu, cnu, dnu, snv, cnv, dnv;
      _Eu.sncndn(u, snu, cnu, dnu);
      _Ev.sncndn(v, snv, cnv, dnv);
      real xi1, eta1, du1, dv1;
      sigma(u, snu, cnu, dnu, v, snv, cnv, dnv, xi1, eta1);
      dwdsigma(u, snu, cnu, dnu, v, snv, cnv, dnv, du1, dv1);
      xi1 -= xi;
      eta1 -= eta;
      real
        delu = xi1 * du1 - eta1 * dv1,
        delv = xi1 * dv1 + eta1 * du1;
      u -= delu;
      v -= delv;
      if (trip)
        break;
      real delw2 = Math::sq(delu) + Math::sq(delv);
      if (!(delw2 >= tol2_))
        ++trip;
    }
  }

  void TransverseMercatorExact::Scale(real tau, real /*lam*/,
                                      real snu, real cnu, real dnu,
                                      real snv, real cnv, real dnv,
                                      real& gamma, real& k) const {
    real sec2 = 1 + Math::sq(tau);    // sec(phi)^2
    // Lee 55.12 -- negated for our sign convention.  gamma gives the bearing
    // (clockwise from true north) of grid north
    gamma = atan2(_mv * snu * snv * cnv, cnu * dnu * dnv);
    // Lee 55.13 with nu given by Lee 9.1 -- in sqrt change the numerator
    // from
    //
    //    (1 - snu^2 * dnv^2) to (_mv * snv^2 + cnu^2 * dnv^2)
    //
    // to maintain accuracy near phi = 90 and change the denomintor from
    //
    //    (dnu^2 + dnv^2 - 1) to (_mu * cnu^2 + _mv * cnv^2)
    //
    // to maintain accuracy near phi = 0, lam = 90 * (1 - e).  Similarly
    // rewrite sqrt term in 9.1 as
    //
    //    _mv + _mu * c^2 instead of 1 - _mu * sin(phi)^2
    k = sqrt(_mv + _mu / sec2) * sqrt(sec2) *
      sqrt( (_mv * Math::sq(snv) + Math::sq(cnu * dnv)) /
            (_mu * Math::sq(cnu) + _mv * Math::sq(cnv)) );
  }

  void TransverseMercatorExact::Forward(real lon0, real lat, real lon,
                                        real& x, real& y,
                                        real& gamma, real& k) const {
    lat = Math::LatFix(lat);
    lon = Math::AngDiff(lon0, lon);
    // Explicitly enforce the parity
    int
      latsign = (!_extendp && lat < 0) ? -1 : 1,
      lonsign = (!_extendp && lon < 0) ? -1 : 1;
    lon *= lonsign;
    lat *= latsign;
    bool backside = !_extendp && lon > 90;
    if (backside) {
      if (lat == 0)
        latsign = -1;
      lon = 180 - lon;
    }
    real
      lam = lon * Math::degree(),
      tau = Math::tand(lat);

    // u,v = coordinates for the Thompson TM, Lee 54
    real u, v;
    if (lat == 90) {
      u = _Eu.K();
      v = 0;
    } else if (lat == 0 && lon == 90 * (1 - _e)) {
      u = 0;
      v = _Ev.K();
    } else
      // tau = tan(phi), taup = sinh(psi)
      zetainv(Math::taupf(tau, _e), lam, u, v);

    real snu, cnu, dnu, snv, cnv, dnv;
    _Eu.sncndn(u, snu, cnu, dnu);
    _Ev.sncndn(v, snv, cnv, dnv);

    real xi, eta;
    sigma(u, snu, cnu, dnu, v, snv, cnv, dnv, xi, eta);
    if (backside)
      xi = 2 * _Eu.E() - xi;
    y = xi * _a * _k0 * latsign;
    x = eta * _a * _k0 * lonsign;

    if (lat == 90) {
      gamma = lon;
      k = 1;
    } else {
      // Recompute (tau, lam) from (u, v) to improve accuracy of Scale
      zeta(u, snu, cnu, dnu, v, snv, cnv, dnv, tau, lam);
      tau = Math::tauf(tau, _e);
      Scale(tau, lam, snu, cnu, dnu, snv, cnv, dnv, gamma, k);
      gamma /= Math::degree();
    }
    if (backside)
      gamma = 180 - gamma;
    gamma *= latsign * lonsign;
    k *= _k0;
  }

  void TransverseMercatorExact::Reverse(real lon0, real x, real y,
                                        real& lat, real& lon,
                                        real& gamma, real& k) const {
    // This undoes the steps in Forward.
    real
      xi = y / (_a * _k0),
      eta = x / (_a * _k0);
    // Explicitly enforce the parity
    int
      latsign = !_extendp && y < 0 ? -1 : 1,
      lonsign = !_extendp && x < 0 ? -1 : 1;
    xi *= latsign;
    eta *= lonsign;
    bool backside = !_extendp && xi > _Eu.E();
    if (backside)
      xi = 2 * _Eu.E()- xi;

    // u,v = coordinates for the Thompson TM, Lee 54
    real u, v;
    if (xi == 0 && eta == _Ev.KE()) {
      u = 0;
      v = _Ev.K();
    } else
      sigmainv(xi, eta, u, v);

    real snu, cnu, dnu, snv, cnv, dnv;
    _Eu.sncndn(u, snu, cnu, dnu);
    _Ev.sncndn(v, snv, cnv, dnv);
    real phi, lam, tau;
    if (v != 0 || u != _Eu.K()) {
      zeta(u, snu, cnu, dnu, v, snv, cnv, dnv, tau, lam);
      tau = Math::tauf(tau, _e);
      phi = atan(tau);
      lat = phi / Math::degree();
      lon = lam / Math::degree();
      Scale(tau, lam, snu, cnu, dnu, snv, cnv, dnv, gamma, k);
      gamma /= Math::degree();
    } else {
      lat = 90;
      lon = lam = gamma = 0;
      k = 1;
    }

    if (backside)
      lon = 180 - lon;
    lon *= lonsign;
    lon = Math::AngNormalize(lon + Math::AngNormalize(lon0));
    lat *= latsign;
    if (backside)
      gamma = 180 - gamma;
    gamma *= latsign * lonsign;
    k *= _k0;
  }

} // namespace GeographicLib