NormalGravity.cpp 11.2 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
/**
 * \file NormalGravity.cpp
 * \brief Implementation for GeographicLib::NormalGravity class
 *
 * Copyright (c) Charles Karney (2011-2018) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/

#include <GeographicLib/NormalGravity.hpp>

#if defined(_MSC_VER)
// Squelch warnings about constant conditional expressions
#  pragma warning (disable: 4127)
#endif

namespace GeographicLib {

  using namespace std;

  void NormalGravity::Initialize(real a, real GM, real omega, real f_J2,
                                 bool geometricp) {
    _a = a;
    if (!(Math::isfinite(_a) && _a > 0))
      throw GeographicErr("Equatorial radius is not positive");
    _GM = GM;
    if (!Math::isfinite(_GM))
      throw GeographicErr("Gravitational constant is not finite");
    _omega = omega;
    _omega2 = Math::sq(_omega);
    _aomega2 = Math::sq(_omega * _a);
    if (!(Math::isfinite(_omega2) && Math::isfinite(_aomega2)))
      throw GeographicErr("Rotation velocity is not finite");
    _f = geometricp ? f_J2 : J2ToFlattening(_a, _GM, _omega, f_J2);
    _b = _a * (1 - _f);
    if (!(Math::isfinite(_b) && _b > 0))
      throw GeographicErr("Polar semi-axis is not positive");
    _J2 = geometricp ? FlatteningToJ2(_a, _GM, _omega, f_J2) : f_J2;
    _e2 = _f * (2 - _f);
    _ep2 = _e2 / (1 - _e2);
    real ex2 = _f < 0 ? -_e2 : _ep2;
    _Q0 = Qf(ex2, _f < 0);
    _earth = Geocentric(_a, _f);
    _E = _a * sqrt(abs(_e2));   // H+M, Eq 2-54
    // H+M, Eq 2-61
    _U0 = _GM * atanzz(ex2, _f < 0) / _b + _aomega2 / 3;
    real P = Hf(ex2, _f < 0) / (6 * _Q0);
    // H+M, Eq 2-73
    _gammae = _GM / (_a * _b) - (1 + P) * _a * _omega2;
    // H+M, Eq 2-74
    _gammap = _GM / (_a * _a) + 2 * P * _b * _omega2;
    // k = gammae * (b * gammap / (a * gammae) - 1)
    //   = (b * gammap - a * gammae) / a
    _k = -_e2 * _GM / (_a * _b) +
      _omega2 * (P * (_a + 2 * _b * (1 - _f)) + _a);
    // f* = (gammap - gammae) / gammae
    _fstar = (-_f * _GM / (_a * _b) + _omega2 * (P * (_a + 2 * _b) + _a)) /
      _gammae;
  }

  NormalGravity::NormalGravity(real a, real GM, real omega, real f_J2,
                               bool geometricp) {
    Initialize(a, GM, omega, f_J2, geometricp);
  }

  const NormalGravity& NormalGravity::WGS84() {
    static const NormalGravity wgs84(Constants::WGS84_a(),
                                     Constants::WGS84_GM(),
                                     Constants::WGS84_omega(),
                                     Constants::WGS84_f(), true);
    return wgs84;
  }

  const NormalGravity& NormalGravity::GRS80() {
    static const NormalGravity grs80(Constants::GRS80_a(),
                                     Constants::GRS80_GM(),
                                     Constants::GRS80_omega(),
                                     Constants::GRS80_J2(), false);
    return grs80;
  }

  Math::real NormalGravity::atan7series(real x) {
    // compute -sum( (-x)^n/(2*n+7), n, 0, inf)
    //   = -1/7 + x/9 - x^2/11 + x^3/13 ...
    //   = (atan(sqrt(x))/sqrt(x)-(1-x/3+x^2/5)) / x^3 (x > 0)
    //   = (atanh(sqrt(-x))/sqrt(-x)-(1-x/3+x^2/5)) / x^3 (x < 0)
    // require abs(x) < 1/2, but better to restrict calls to abs(x) < 1/4
    static const real lg2eps_ =
      -log(numeric_limits<real>::epsilon() / 2) / log(real(2));
    int e;
    frexp(x, &e);
    e = max(-e, 1);             // Here's where abs(x) < 1/2 is assumed
    // x = [0.5,1) * 2^(-e)
    // estimate n s.t. x^n/n < 1/7 * epsilon/2
    // a stronger condition is x^n < epsilon/2
    // taking log2 of both sides, a stronger condition is n*(-e) < -lg2eps;
    // or n*e > lg2eps or n > ceiling(lg2eps/e)
    int n = int(ceil(lg2eps_ / e));
    Math::real v = 0;
    while (n--)                 // iterating from n-1 down to 0
      v = - x * v - 1/Math::real(2*n + 7);
    return v;
  }

  Math::real NormalGravity::atan5series(real x) {
    // Compute Taylor series approximations to
    //   (atan(z)-(z-z^3/3))/z^5,
    // z = sqrt(x)
    // require abs(x) < 1/2, but better to restrict calls to abs(x) < 1/4
    return 1/real(5) + x * atan7series(x);
  }

  Math::real NormalGravity::Qf(real x, bool alt) {
    // Compute
    //   Q(z) = (((1 + 3/z^2) * atan(z) - 3/z)/2) / z^3
    //        = q(z)/z^3 with q(z) defined by H+M, Eq 2-57 with z = E/u
    //   z = sqrt(x)
    real y = alt ? -x / (1 + x) : x;
    return !(4 * abs(y) < 1) ?  // Backwards test to allow NaNs through
      ((1 + 3/y) * atanzz(x, alt) - 3/y) / (2 * y) :
      (3 * (3 + y) * atan5series(y) - 1) / 6;
  }

  Math::real NormalGravity::Hf(real x, bool alt) {
    // z = sqrt(x)
    // Compute
    //   H(z) = (3*Q(z)+z*diff(Q(z),z))*(1+z^2)
    //        = (3 * (1 + 1/z^2) * (1 - atan(z)/z) - 1) / z^2
    //        = q'(z)/z^2, with q'(z) defined by H+M, Eq 2-67, with z = E/u
    real y = alt ? -x / (1 + x) : x;
    return !(4 * abs(y) < 1) ?  // Backwards test to allow NaNs through
      (3 * (1 + 1/y) * (1 - atanzz(x, alt)) - 1) / y :
      1 - 3 * (1 + y) * atan5series(y);
  }

  Math::real NormalGravity::QH3f(real x, bool alt) {
    // z = sqrt(x)
    // (Q(z) - H(z)/3) / z^2
    //   = - (1+z^2)/(3*z) * d(Q(z))/dz - Q(z)
    //   = ((15+9*z^2)*atan(z)-4*z^3-15*z)/(6*z^7)
    //   = ((25+15*z^2)*atan7+3)/10
    real y = alt ? -x / (1 + x) : x;
    return !(4 * abs(y) < 1) ? // Backwards test to allow NaNs through
      ((9 + 15/y) * atanzz(x, alt) - 4 - 15/y) / (6 * Math::sq(y)) :
      ((25 + 15*y) * atan7series(y) + 3)/10;
  }

  Math::real NormalGravity::Jn(int n) const {
    // Note Jn(0) = -1; Jn(2) = _J2; Jn(odd) = 0
    if (n & 1 || n < 0)
      return 0;
    n /= 2;
    real e2n = 1;            // Perhaps this should just be e2n = pow(-_e2, n);
    for (int j = n; j--;)
      e2n *= -_e2;
    return                      // H+M, Eq 2-92
      -3 * e2n * ((1 - n) + 5 * n * _J2 / _e2) / ((2 * n + 1) * (2 * n + 3));
  }

  Math::real NormalGravity::SurfaceGravity(real lat) const {
    real sphi = Math::sind(Math::LatFix(lat));
    // H+M, Eq 2-78
    return (_gammae + _k * Math::sq(sphi)) / sqrt(1 - _e2 * Math::sq(sphi));
  }

  Math::real NormalGravity::V0(real X, real Y, real Z,
                               real& GammaX, real& GammaY, real& GammaZ) const
  {
    // See H+M, Sec 6-2
    real
      p = Math::hypot(X, Y),
      clam = p != 0 ? X/p : 1,
      slam = p != 0 ? Y/p : 0,
      r = Math::hypot(p, Z);
    if (_f < 0) swap(p, Z);
    real
      Q = Math::sq(r) - Math::sq(_E),
      t2 = Math::sq(2 * _E * Z),
      disc = sqrt(Math::sq(Q) + t2),
      // This is H+M, Eq 6-8a, but generalized to deal with Q negative
      // accurately.
      u = sqrt((Q >= 0 ? (Q + disc) : t2 / (disc - Q)) / 2),
      uE = Math::hypot(u, _E),
      // H+M, Eq 6-8b
      sbet = u != 0 ? Z * uE : Math::copysign(sqrt(-Q), Z),
      cbet = u != 0 ? p * u : p,
      s = Math::hypot(cbet, sbet);
    sbet = s != 0 ? sbet/s : 1;
    cbet = s != 0 ? cbet/s : 0;
    real
      z = _E/u,
      z2 = Math::sq(z),
      den = Math::hypot(u, _E * sbet);
    if (_f < 0) {
      swap(sbet, cbet);
      swap(u, uE);
    }
    real
      invw = uE / den,          // H+M, Eq 2-63
      bu = _b / (u != 0 || _f < 0 ? u : _E),
      // Qf(z2->inf, false) = pi/(4*z^3)
      q = ((u != 0 || _f < 0 ? Qf(z2, _f < 0) : Math::pi() / 4) / _Q0) *
        bu * Math::sq(bu),
      qp = _b * Math::sq(bu) * (u != 0 || _f < 0 ? Hf(z2, _f < 0) : 2) / _Q0,
      ang = (Math::sq(sbet) - 1/real(3)) / 2,
      // H+M, Eqs 2-62 + 6-9, but omitting last (rotational) term.
      Vres = _GM * (u != 0 || _f < 0 ?
                    atanzz(z2, _f < 0) / u :
                    Math::pi() / (2 * _E)) + _aomega2 * q * ang,
      // H+M, Eq 6-10
      gamu = - (_GM + (_aomega2 * qp * ang)) * invw / Math::sq(uE),
      gamb = _aomega2 * q * sbet * cbet * invw / uE,
      t = u * invw / uE,
      gamp = t * cbet * gamu - invw * sbet * gamb;
    // H+M, Eq 6-12
    GammaX = gamp * clam;
    GammaY = gamp * slam;
    GammaZ = invw * sbet * gamu + t * cbet * gamb;
    return Vres;
  }

  Math::real NormalGravity::Phi(real X, real Y, real& fX, real& fY) const {
    fX = _omega2 * X;
    fY = _omega2 * Y;
    // N.B. fZ = 0;
    return _omega2 * (Math::sq(X) + Math::sq(Y)) / 2;
  }

  Math::real NormalGravity::U(real X, real Y, real Z,
                              real& gammaX, real& gammaY, real& gammaZ) const {
    real fX, fY;
    real Ures = V0(X, Y, Z, gammaX, gammaY, gammaZ) + Phi(X, Y, fX, fY);
    gammaX += fX;
    gammaY += fY;
    return Ures;
  }

  Math::real NormalGravity::Gravity(real lat, real h,
                                    real& gammay, real& gammaz) const {
    real X, Y, Z;
    real M[Geocentric::dim2_];
    _earth.IntForward(lat, 0, h, X, Y, Z, M);
    real gammaX, gammaY, gammaZ,
      Ures = U(X, Y, Z, gammaX, gammaY, gammaZ);
    // gammax = M[0] * gammaX + M[3] * gammaY + M[6] * gammaZ;
    gammay = M[1] * gammaX + M[4] * gammaY + M[7] * gammaZ;
    gammaz = M[2] * gammaX + M[5] * gammaY + M[8] * gammaZ;
    return Ures;
  }

  Math::real NormalGravity::J2ToFlattening(real a, real GM,
                                           real omega, real J2) {
    // Solve
    //   f = e^2 * (1 -  K * e/q0) - 3 * J2 = 0
    // for e^2 using Newton's method
    static const real maxe_ = 1 - numeric_limits<real>::epsilon();
    static const real eps2_ = sqrt(numeric_limits<real>::epsilon()) / 100;
    real
      K = 2 * Math::sq(a * omega) * a / (15 * GM),
      J0 = (1 - 4 * K / Math::pi()) / 3;
    if (!(GM > 0 && Math::isfinite(K) && K >= 0))
      return Math::NaN();
    if (!(Math::isfinite(J2) && J2 <= J0)) return Math::NaN();
    if (J2 == J0) return 1;
    // Solve e2 - f1 * f2 * K / Q0 - 3 * J2 = 0 for J2 close to J0;
    // subst e2 = ep2/(1+ep2), f2 = 1/(1+ep2), f1 = 1/sqrt(1+ep2), J2 = J0-dJ2,
    // Q0 = pi/(4*z^3) - 2/z^4 + (3*pi)/(4*z^5), z = sqrt(ep2), and balance two
    // leading terms to give
    real
      ep2 = max(Math::sq(32 * K / (3 * Math::sq(Math::pi()) * (J0 - J2))),
                -maxe_),
      e2 = min(ep2 / (1 + ep2), maxe_);
    for (int j = 0; j < maxit_ || GEOGRAPHICLIB_PANIC; ++j) {
      real
        e2a = e2, ep2a = ep2,
        f2 = 1 - e2,            // (1 - f)^2
        f1 = sqrt(f2),          // (1 - f)
        Q0 = Qf(e2 < 0 ? -e2 : ep2, e2 < 0),
        h = e2 - f1 * f2 * K / Q0 - 3 * J2,
        dh = 1 - 3 * f1 * K * QH3f(e2 < 0 ? -e2 : ep2, e2 < 0) /
                     (2 * Math::sq(Q0));
      e2 = min(e2a - h / dh, maxe_);
      ep2 = max(e2 / (1 - e2), -maxe_);
      if (abs(h) < eps2_ || e2 == e2a || ep2 == ep2a)
        break;
    }
    return e2 / (1 + sqrt(1 - e2));
  }

  Math::real NormalGravity::FlatteningToJ2(real a, real GM,
                                           real omega, real f) {
    real
      K = 2 * Math::sq(a * omega) * a / (15 * GM),
      f1 = 1 - f,
      f2 = Math::sq(f1),
      e2 = f * (2 - f);
    // H+M, Eq 2-90 + 2-92'
    return (e2 - K * f1 * f2 / Qf(f < 0 ? -e2 : e2 / f2, f < 0)) / 3;
  }

} // namespace GeographicLib