GravityModel.cpp 14.6 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
/**
 * \file GravityModel.cpp
 * \brief Implementation for GeographicLib::GravityModel class
 *
 * Copyright (c) Charles Karney (2011-2019) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/

#include <GeographicLib/GravityModel.hpp>
#include <fstream>
#include <limits>
#include <GeographicLib/SphericalEngine.hpp>
#include <GeographicLib/GravityCircle.hpp>
#include <GeographicLib/Utility.hpp>

#if !defined(GEOGRAPHICLIB_DATA)
#  if defined(_WIN32)
#    define GEOGRAPHICLIB_DATA "C:/ProgramData/GeographicLib"
#  else
#    define GEOGRAPHICLIB_DATA "/usr/local/share/GeographicLib"
#  endif
#endif

#if !defined(GEOGRAPHICLIB_GRAVITY_DEFAULT_NAME)
#  define GEOGRAPHICLIB_GRAVITY_DEFAULT_NAME "egm96"
#endif

#if defined(_MSC_VER)
// Squelch warnings about unsafe use of getenv
#  pragma warning (disable: 4996)
#endif

namespace GeographicLib {

  using namespace std;

  GravityModel::GravityModel(const std::string& name, const std::string& path,
                             int Nmax, int Mmax)
    : _name(name)
    , _dir(path)
    , _description("NONE")
    , _date("UNKNOWN")
    , _amodel(Math::NaN())
    , _GMmodel(Math::NaN())
    , _zeta0(0)
    , _corrmult(1)
    , _nmx(-1)
    , _mmx(-1)
    , _norm(SphericalHarmonic::FULL)
  {
    if (_dir.empty())
      _dir = DefaultGravityPath();
    bool truncate = Nmax >= 0 || Mmax >= 0;
    if (truncate) {
      if (Nmax >= 0 && Mmax < 0) Mmax = Nmax;
      if (Nmax < 0) Nmax = numeric_limits<int>::max();
      if (Mmax < 0) Mmax = numeric_limits<int>::max();
    }
    ReadMetadata(_name);
    {
      string coeff = _filename + ".cof";
      ifstream coeffstr(coeff.c_str(), ios::binary);
      if (!coeffstr.good())
        throw GeographicErr("Error opening " + coeff);
      char id[idlength_ + 1];
      coeffstr.read(id, idlength_);
      if (!coeffstr.good())
        throw GeographicErr("No header in " + coeff);
      id[idlength_] = '\0';
      if (_id != string(id))
        throw GeographicErr("ID mismatch: " + _id + " vs " + id);
      int N, M;
      if (truncate) { N = Nmax; M = Mmax; }
      SphericalEngine::coeff::readcoeffs(coeffstr, N, M, _Cx, _Sx, truncate);
      if (!(N >= 0 && M >= 0))
        throw GeographicErr("Degree and order must be at least 0");
      if (_Cx[0] != 0)
        throw GeographicErr("The degree 0 term should be zero");
      _Cx[0] = 1;               // Include the 1/r term in the sum
      _gravitational = SphericalHarmonic(_Cx, _Sx, N, N, M, _amodel, _norm);
      if (truncate) { N = Nmax; M = Mmax; }
      SphericalEngine::coeff::readcoeffs(coeffstr, N, M, _CC, _CS, truncate);
      if (N < 0) {
        N = M = 0;
        _CC.resize(1, real(0));
      }
      _CC[0] += _zeta0 / _corrmult;
      _correction = SphericalHarmonic(_CC, _CS, N, N, M, real(1), _norm);
      int pos = int(coeffstr.tellg());
      coeffstr.seekg(0, ios::end);
      if (pos != coeffstr.tellg())
        throw GeographicErr("Extra data in " + coeff);
    }
    int nmx = _gravitational.Coefficients().nmx();
    _nmx = max(nmx, _correction.Coefficients().nmx());
    _mmx = max(_gravitational.Coefficients().mmx(),
               _correction.Coefficients().mmx());
    // Adjust the normalization of the normal potential to match the model.
    real mult = _earth._GM / _GMmodel;
    real amult = Math::sq(_earth._a / _amodel);
    // The 0th term in _zonal should be is 1 + _dzonal0.  Instead set it to 1
    // to give exact cancellation with the (0,0) term in the model and account
    // for _dzonal0 separately.
    _zonal.clear(); _zonal.push_back(1);
    _dzonal0 = (_earth.MassConstant() - _GMmodel) / _GMmodel;
    for (int n = 2; n <= nmx; n += 2) {
      // Only include as many normal zonal terms as matter.  Figuring the limit
      // in this way works because the coefficients of the normal potential
      // (which is smooth) decay much more rapidly that the corresponding
      // coefficient of the model potential (which is bumpy).  Typically this
      // goes out to n = 18.
      mult *= amult;
      real
        r = _Cx[n],                                        // the model term
        s = - mult * _earth.Jn(n) / sqrt(real(2 * n + 1)), // the normal term
        t = r - s;                                         // the difference
      if (t == r)               // the normal term is negligible
        break;
      _zonal.push_back(0);      // index = n - 1; the odd terms are 0
      _zonal.push_back(s);
    }
    int nmx1 = int(_zonal.size()) - 1;
    _disturbing = SphericalHarmonic1(_Cx, _Sx,
                                     _gravitational.Coefficients().N(),
                                     nmx, _gravitational.Coefficients().mmx(),
                                     _zonal,
                                     _zonal, // This is not accessed!
                                     nmx1, nmx1, 0,
                                     _amodel,
                                     SphericalHarmonic1::normalization(_norm));
  }

  void GravityModel::ReadMetadata(const std::string& name) {
    const char* spaces = " \t\n\v\f\r";
    _filename = _dir + "/" + name + ".egm";
    ifstream metastr(_filename.c_str());
    if (!metastr.good())
      throw GeographicErr("Cannot open " + _filename);
    string line;
    getline(metastr, line);
    if (!(line.size() >= 6 && line.substr(0,5) == "EGMF-"))
      throw GeographicErr(_filename + " does not contain EGMF-n signature");
    string::size_type n = line.find_first_of(spaces, 5);
    if (n != string::npos)
      n -= 5;
    string version(line, 5, n);
    if (version != "1")
      throw GeographicErr("Unknown version in " + _filename + ": " + version);
    string key, val;
    real a = Math::NaN(), GM = a, omega = a, f = a, J2 = a;
    while (getline(metastr, line)) {
      if (!Utility::ParseLine(line, key, val))
        continue;
      // Process key words
      if (key == "Name")
        _name = val;
      else if (key == "Description")
        _description = val;
      else if (key == "ReleaseDate")
        _date = val;
      else if (key == "ModelRadius")
        _amodel = Utility::val<real>(val);
      else if (key == "ModelMass")
        _GMmodel = Utility::val<real>(val);
      else if (key == "AngularVelocity")
        omega = Utility::val<real>(val);
      else if (key == "ReferenceRadius")
        a = Utility::val<real>(val);
      else if (key == "ReferenceMass")
        GM = Utility::val<real>(val);
      else if (key == "Flattening")
        f = Utility::fract<real>(val);
      else if (key == "DynamicalFormFactor")
        J2 = Utility::fract<real>(val);
      else if (key == "HeightOffset")
        _zeta0 = Utility::fract<real>(val);
      else if (key == "CorrectionMultiplier")
        _corrmult = Utility::fract<real>(val);
      else if (key == "Normalization") {
        if (val == "FULL" || val == "Full" || val == "full")
          _norm = SphericalHarmonic::FULL;
        else if (val == "SCHMIDT" || val == "Schmidt" || val == "schmidt")
          _norm = SphericalHarmonic::SCHMIDT;
        else
          throw GeographicErr("Unknown normalization " + val);
      } else if (key == "ByteOrder") {
        if (val == "Big" || val == "big")
          throw GeographicErr("Only little-endian ordering is supported");
        else if (!(val == "Little" || val == "little"))
          throw GeographicErr("Unknown byte ordering " + val);
      } else if (key == "ID")
        _id = val;
      // else unrecognized keywords are skipped
    }
    // Check values
    if (!(Math::isfinite(_amodel) && _amodel > 0))
      throw GeographicErr("Model radius must be positive");
    if (!(Math::isfinite(_GMmodel) && _GMmodel > 0))
      throw GeographicErr("Model mass constant must be positive");
    if (!(Math::isfinite(_corrmult) && _corrmult > 0))
      throw GeographicErr("Correction multiplier must be positive");
    if (!(Math::isfinite(_zeta0)))
      throw GeographicErr("Height offset must be finite");
    if (int(_id.size()) != idlength_)
      throw GeographicErr("Invalid ID");
    if (Math::isfinite(f) && Math::isfinite(J2))
      throw GeographicErr("Cannot specify both f and J2");
    _earth = NormalGravity(a, GM, omega,
                           Math::isfinite(f) ? f : J2, Math::isfinite(f));
  }

  Math::real GravityModel::InternalT(real X, real Y, real Z,
                                     real& deltaX, real& deltaY, real& deltaZ,
                                     bool gradp, bool correct) const {
    // If correct, then produce the correct T = W - U.  Otherwise, neglect the
    // n = 0 term (which is proportial to the difference in the model and
    // reference values of GM).
    if (_dzonal0 == 0)
      // No need to do the correction
      correct = false;
    real T, invR = correct ? 1 / Math::hypot(Math::hypot(X, Y), Z) : 1;
    if (gradp) {
      // initial values to suppress warnings
      deltaX = deltaY = deltaZ = 0;
      T = _disturbing(-1, X, Y, Z, deltaX, deltaY, deltaZ);
      real f = _GMmodel / _amodel;
      deltaX *= f;
      deltaY *= f;
      deltaZ *= f;
      if (correct) {
        invR = _GMmodel * _dzonal0 * invR * invR * invR;
        deltaX += X * invR;
        deltaY += Y * invR;
        deltaZ += Z * invR;
      }
    } else
      T = _disturbing(-1, X, Y, Z);
    T = (T / _amodel - (correct ? _dzonal0 : 0) * invR) * _GMmodel;
    return T;
  }

  Math::real GravityModel::V(real X, real Y, real Z,
                             real& GX, real& GY, real& GZ) const {
    real
      Vres = _gravitational(X, Y, Z, GX, GY, GZ),
      f = _GMmodel / _amodel;
    Vres *= f;
    GX *= f;
    GY *= f;
    GZ *= f;
    return Vres;
  }

  Math::real GravityModel::W(real X, real Y, real Z,
                             real& gX, real& gY, real& gZ) const {
    real fX, fY,
      Wres = V(X, Y, Z, gX, gY, gZ) + _earth.Phi(X, Y, fX, fY);
    gX += fX;
    gY += fY;
    return Wres;
  }

  void GravityModel::SphericalAnomaly(real lat, real lon, real h,
                                      real& Dg01, real& xi, real& eta) const {
    real X, Y, Z, M[Geocentric::dim2_];
    _earth.Earth().IntForward(lat, lon, h, X, Y, Z, M);
    real
      deltax, deltay, deltaz,
      T = InternalT(X, Y, Z, deltax, deltay, deltaz, true, false),
      clam = M[3], slam = -M[0],
      P = Math::hypot(X, Y),
      R = Math::hypot(P, Z),
      // psi is geocentric latitude
      cpsi = R != 0 ? P / R : M[7],
      spsi = R != 0 ? Z / R : M[8];
    // Rotate cartesian into spherical coordinates
    real MC[Geocentric::dim2_];
    Geocentric::Rotation(spsi, cpsi, slam, clam, MC);
    Geocentric::Unrotate(MC, deltax, deltay, deltaz, deltax, deltay, deltaz);
    // H+M, Eq 2-151c
    Dg01 = - deltaz - 2 * T / R;
    real gammaX, gammaY, gammaZ;
    _earth.U(X, Y, Z, gammaX, gammaY, gammaZ);
    real gamma = Math::hypot( Math::hypot(gammaX, gammaY), gammaZ);
    xi  = -(deltay/gamma) / Math::degree();
    eta = -(deltax/gamma) / Math::degree();
  }

  Math::real GravityModel::GeoidHeight(real lat, real lon) const
  {
    real X, Y, Z;
    _earth.Earth().IntForward(lat, lon, 0, X, Y, Z, NULL);
    real
      gamma0 = _earth.SurfaceGravity(lat),
      dummy,
      T = InternalT(X, Y, Z, dummy, dummy, dummy, false, false),
      invR = 1 / Math::hypot(Math::hypot(X, Y), Z),
      correction = _corrmult * _correction(invR * X, invR * Y, invR * Z);
    // _zeta0 has been included in _correction
    return T/gamma0 + correction;
  }

  Math::real GravityModel::Gravity(real lat, real lon, real h,
                                   real& gx, real& gy, real& gz) const {
    real X, Y, Z, M[Geocentric::dim2_];
    _earth.Earth().IntForward(lat, lon, h, X, Y, Z, M);
    real Wres = W(X, Y, Z, gx, gy, gz);
    Geocentric::Unrotate(M, gx, gy, gz, gx, gy, gz);
    return Wres;
  }
  Math::real GravityModel::Disturbance(real lat, real lon, real h,
                                       real& deltax, real& deltay,
                                       real& deltaz) const {
    real X, Y, Z, M[Geocentric::dim2_];
    _earth.Earth().IntForward(lat, lon, h, X, Y, Z, M);
    real Tres = InternalT(X, Y, Z, deltax, deltay, deltaz, true, true);
    Geocentric::Unrotate(M, deltax, deltay, deltaz, deltax, deltay, deltaz);
    return Tres;
  }

  GravityCircle GravityModel::Circle(real lat, real h, unsigned caps) const {
    if (h != 0)
      // Disallow invoking GeoidHeight unless h is zero.
      caps &= ~(CAP_GAMMA0 | CAP_C);
    real X, Y, Z, M[Geocentric::dim2_];
    _earth.Earth().IntForward(lat, 0, h, X, Y, Z, M);
    // Y = 0, cphi = M[7], sphi = M[8];
    real
      invR = 1 / Math::hypot(X, Z),
      gamma0 = (caps & CAP_GAMMA0 ?_earth.SurfaceGravity(lat)
                : Math::NaN()),
      fx, fy, fz, gamma;
    if (caps & CAP_GAMMA) {
      _earth.U(X, Y, Z, fx, fy, fz); // fy = 0
      gamma = Math::hypot(fx, fz);
    } else
      gamma = Math::NaN();
    _earth.Phi(X, Y, fx, fy);
    return GravityCircle(GravityCircle::mask(caps),
                         _earth._a, _earth._f, lat, h, Z, X, M[7], M[8],
                         _amodel, _GMmodel, _dzonal0, _corrmult,
                         gamma0, gamma, fx,
                         caps & CAP_G ?
                         _gravitational.Circle(X, Z, true) :
                         CircularEngine(),
                         // N.B. If CAP_DELTA is set then CAP_T should be too.
                         caps & CAP_T ?
                         _disturbing.Circle(-1, X, Z, (caps&CAP_DELTA) != 0) :
                         CircularEngine(),
                         caps & CAP_C ?
                         _correction.Circle(invR * X, invR * Z, false) :
                         CircularEngine());
  }

  std::string GravityModel::DefaultGravityPath() {
    string path;
    char* gravitypath = getenv("GEOGRAPHICLIB_GRAVITY_PATH");
    if (gravitypath)
      path = string(gravitypath);
    if (!path.empty())
      return path;
    char* datapath = getenv("GEOGRAPHICLIB_DATA");
    if (datapath)
      path = string(datapath);
    return (!path.empty() ? path : string(GEOGRAPHICLIB_DATA)) + "/gravity";
  }

  std::string GravityModel::DefaultGravityName() {
    string name;
    char* gravityname = getenv("GEOGRAPHICLIB_GRAVITY_NAME");
    if (gravityname)
      name = string(gravityname);
    return !name.empty() ? name : string(GEOGRAPHICLIB_GRAVITY_DEFAULT_NAME);
  }

} // namespace GeographicLib