GeodesicLine.cpp 12.7 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
/**
 * \file GeodesicLine.cpp
 * \brief Implementation for GeographicLib::GeodesicLine class
 *
 * Copyright (c) Charles Karney (2009-2016) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 *
 * This is a reformulation of the geodesic problem.  The notation is as
 * follows:
 * - at a general point (no suffix or 1 or 2 as suffix)
 *   - phi = latitude
 *   - beta = latitude on auxiliary sphere
 *   - omega = longitude on auxiliary sphere
 *   - lambda = longitude
 *   - alpha = azimuth of great circle
 *   - sigma = arc length along great circle
 *   - s = distance
 *   - tau = scaled distance (= sigma at multiples of pi/2)
 * - at northwards equator crossing
 *   - beta = phi = 0
 *   - omega = lambda = 0
 *   - alpha = alpha0
 *   - sigma = s = 0
 * - a 12 suffix means a difference, e.g., s12 = s2 - s1.
 * - s and c prefixes mean sin and cos
 **********************************************************************/

#include <GeographicLib/GeodesicLine.hpp>

namespace GeographicLib {

  using namespace std;

  void GeodesicLine::LineInit(const Geodesic& g,
                              real lat1, real lon1,
                              real azi1, real salp1, real calp1,
                              unsigned caps) {
    tiny_ = g.tiny_;
    _lat1 = Math::LatFix(lat1);
    _lon1 = lon1;
    _azi1 = azi1;
    _salp1 = salp1;
    _calp1 = calp1;
    _a = g._a;
    _f = g._f;
    _b = g._b;
    _c2 = g._c2;
    _f1 = g._f1;
    // Always allow latitude and azimuth and unrolling of longitude
    _caps = caps | LATITUDE | AZIMUTH | LONG_UNROLL;

    real cbet1, sbet1;
    Math::sincosd(Math::AngRound(_lat1), sbet1, cbet1); sbet1 *= _f1;
    // Ensure cbet1 = +epsilon at poles
    Math::norm(sbet1, cbet1); cbet1 = max(tiny_, cbet1);
    _dn1 = sqrt(1 + g._ep2 * Math::sq(sbet1));

    // Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
    _salp0 = _salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
    // Alt: calp0 = hypot(sbet1, calp1 * cbet1).  The following
    // is slightly better (consider the case salp1 = 0).
    _calp0 = Math::hypot(_calp1, _salp1 * sbet1);
    // Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
    // sig = 0 is nearest northward crossing of equator.
    // With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
    // With bet1 =  pi/2, alp1 = -pi, sig1 =  pi/2
    // With bet1 = -pi/2, alp1 =  0 , sig1 = -pi/2
    // Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
    // With alp0 in (0, pi/2], quadrants for sig and omg coincide.
    // No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
    // With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
    _ssig1 = sbet1; _somg1 = _salp0 * sbet1;
    _csig1 = _comg1 = sbet1 != 0 || _calp1 != 0 ? cbet1 * _calp1 : 1;
    Math::norm(_ssig1, _csig1); // sig1 in (-pi, pi]
    // Math::norm(_somg1, _comg1); -- don't need to normalize!

    _k2 = Math::sq(_calp0) * g._ep2;
    real eps = _k2 / (2 * (1 + sqrt(1 + _k2)) + _k2);

    if (_caps & CAP_C1) {
      _A1m1 = Geodesic::A1m1f(eps);
      Geodesic::C1f(eps, _C1a);
      _B11 = Geodesic::SinCosSeries(true, _ssig1, _csig1, _C1a, nC1_);
      real s = sin(_B11), c = cos(_B11);
      // tau1 = sig1 + B11
      _stau1 = _ssig1 * c + _csig1 * s;
      _ctau1 = _csig1 * c - _ssig1 * s;
      // Not necessary because C1pa reverts C1a
      //    _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa, nC1p_);
    }

    if (_caps & CAP_C1p)
      Geodesic::C1pf(eps, _C1pa);

    if (_caps & CAP_C2) {
      _A2m1 = Geodesic::A2m1f(eps);
      Geodesic::C2f(eps, _C2a);
      _B21 = Geodesic::SinCosSeries(true, _ssig1, _csig1, _C2a, nC2_);
    }

    if (_caps & CAP_C3) {
      g.C3f(eps, _C3a);
      _A3c = -_f * _salp0 * g.A3f(eps);
      _B31 = Geodesic::SinCosSeries(true, _ssig1, _csig1, _C3a, nC3_-1);
    }

    if (_caps & CAP_C4) {
      g.C4f(eps, _C4a);
      // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
      _A4 = Math::sq(_a) * _calp0 * _salp0 * g._e2;
      _B41 = Geodesic::SinCosSeries(false, _ssig1, _csig1, _C4a, nC4_);
    }

    _a13 = _s13 = Math::NaN();
  }

  GeodesicLine::GeodesicLine(const Geodesic& g,
                             real lat1, real lon1, real azi1,
                             unsigned caps) {
    azi1 = Math::AngNormalize(azi1);
    real salp1, calp1;
    // Guard against underflow in salp0.  Also -0 is converted to +0.
    Math::sincosd(Math::AngRound(azi1), salp1, calp1);
    LineInit(g, lat1, lon1, azi1, salp1, calp1, caps);
  }

  GeodesicLine::GeodesicLine(const Geodesic& g,
                             real lat1, real lon1,
                             real azi1, real salp1, real calp1,
                             unsigned caps, bool arcmode, real s13_a13) {
    LineInit(g, lat1, lon1, azi1, salp1, calp1, caps);
    GenSetDistance(arcmode, s13_a13);
  }

  Math::real GeodesicLine::GenPosition(bool arcmode, real s12_a12,
                                       unsigned outmask,
                                       real& lat2, real& lon2, real& azi2,
                                       real& s12, real& m12,
                                       real& M12, real& M21,
                                       real& S12) const {
    outmask &= _caps & OUT_MASK;
    if (!( Init() && (arcmode || (_caps & (OUT_MASK & DISTANCE_IN))) ))
      // Uninitialized or impossible distance calculation requested
      return Math::NaN();

    // Avoid warning about uninitialized B12.
    real sig12, ssig12, csig12, B12 = 0, AB1 = 0;
    if (arcmode) {
      // Interpret s12_a12 as spherical arc length
      sig12 = s12_a12 * Math::degree();
      Math::sincosd(s12_a12, ssig12, csig12);
    } else {
      // Interpret s12_a12 as distance
      real
        tau12 = s12_a12 / (_b * (1 + _A1m1)),
        s = sin(tau12),
        c = cos(tau12);
      // tau2 = tau1 + tau12
      B12 = - Geodesic::SinCosSeries(true,
                                     _stau1 * c + _ctau1 * s,
                                     _ctau1 * c - _stau1 * s,
                                     _C1pa, nC1p_);
      sig12 = tau12 - (B12 - _B11);
      ssig12 = sin(sig12); csig12 = cos(sig12);
      if (abs(_f) > 0.01) {
        // Reverted distance series is inaccurate for |f| > 1/100, so correct
        // sig12 with 1 Newton iteration.  The following table shows the
        // approximate maximum error for a = WGS_a() and various f relative to
        // GeodesicExact.
        //     erri = the error in the inverse solution (nm)
        //     errd = the error in the direct solution (series only) (nm)
        //     errda = the error in the direct solution
        //             (series + 1 Newton) (nm)
        //
        //       f     erri  errd errda
        //     -1/5    12e6 1.2e9  69e6
        //     -1/10  123e3  12e6 765e3
        //     -1/20   1110 108e3  7155
        //     -1/50  18.63 200.9 27.12
        //     -1/100 18.63 23.78 23.37
        //     -1/150 18.63 21.05 20.26
        //      1/150 22.35 24.73 25.83
        //      1/100 22.35 25.03 25.31
        //      1/50  29.80 231.9 30.44
        //      1/20   5376 146e3  10e3
        //      1/10  829e3  22e6 1.5e6
        //      1/5   157e6 3.8e9 280e6
        real
          ssig2 = _ssig1 * csig12 + _csig1 * ssig12,
          csig2 = _csig1 * csig12 - _ssig1 * ssig12;
        B12 = Geodesic::SinCosSeries(true, ssig2, csig2, _C1a, nC1_);
        real serr = (1 + _A1m1) * (sig12 + (B12 - _B11)) - s12_a12 / _b;
        sig12 = sig12 - serr / sqrt(1 + _k2 * Math::sq(ssig2));
        ssig12 = sin(sig12); csig12 = cos(sig12);
        // Update B12 below
      }
    }

    real ssig2, csig2, sbet2, cbet2, salp2, calp2;
    // sig2 = sig1 + sig12
    ssig2 = _ssig1 * csig12 + _csig1 * ssig12;
    csig2 = _csig1 * csig12 - _ssig1 * ssig12;
    real dn2 = sqrt(1 + _k2 * Math::sq(ssig2));
    if (outmask & (DISTANCE | REDUCEDLENGTH | GEODESICSCALE)) {
      if (arcmode || abs(_f) > 0.01)
        B12 = Geodesic::SinCosSeries(true, ssig2, csig2, _C1a, nC1_);
      AB1 = (1 + _A1m1) * (B12 - _B11);
    }
    // sin(bet2) = cos(alp0) * sin(sig2)
    sbet2 = _calp0 * ssig2;
    // Alt: cbet2 = hypot(csig2, salp0 * ssig2);
    cbet2 = Math::hypot(_salp0, _calp0 * csig2);
    if (cbet2 == 0)
      // I.e., salp0 = 0, csig2 = 0.  Break the degeneracy in this case
      cbet2 = csig2 = tiny_;
    // tan(alp0) = cos(sig2)*tan(alp2)
    salp2 = _salp0; calp2 = _calp0 * csig2; // No need to normalize

    if (outmask & DISTANCE)
      s12 = arcmode ? _b * ((1 + _A1m1) * sig12 + AB1) : s12_a12;

    if (outmask & LONGITUDE) {
      // tan(omg2) = sin(alp0) * tan(sig2)
      real somg2 = _salp0 * ssig2, comg2 = csig2,  // No need to normalize
        E = Math::copysign(real(1), _salp0);       // east-going?
      // omg12 = omg2 - omg1
      real omg12 = outmask & LONG_UNROLL
        ? E * (sig12
               - (atan2(    ssig2, csig2) - atan2(    _ssig1, _csig1))
               + (atan2(E * somg2, comg2) - atan2(E * _somg1, _comg1)))
        : atan2(somg2 * _comg1 - comg2 * _somg1,
                comg2 * _comg1 + somg2 * _somg1);
      real lam12 = omg12 + _A3c *
        ( sig12 + (Geodesic::SinCosSeries(true, ssig2, csig2, _C3a, nC3_-1)
                   - _B31));
      real lon12 = lam12 / Math::degree();
      lon2 = outmask & LONG_UNROLL ? _lon1 + lon12 :
        Math::AngNormalize(Math::AngNormalize(_lon1) +
                           Math::AngNormalize(lon12));
    }

    if (outmask & LATITUDE)
      lat2 = Math::atan2d(sbet2, _f1 * cbet2);

    if (outmask & AZIMUTH)
      azi2 = Math::atan2d(salp2, calp2);

    if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
      real
        B22 = Geodesic::SinCosSeries(true, ssig2, csig2, _C2a, nC2_),
        AB2 = (1 + _A2m1) * (B22 - _B21),
        J12 = (_A1m1 - _A2m1) * sig12 + (AB1 - AB2);
      if (outmask & REDUCEDLENGTH)
        // Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
        // accurate cancellation in the case of coincident points.
        m12 = _b * ((dn2 * (_csig1 * ssig2) - _dn1 * (_ssig1 * csig2))
                    - _csig1 * csig2 * J12);
      if (outmask & GEODESICSCALE) {
        real t = _k2 * (ssig2 - _ssig1) * (ssig2 + _ssig1) / (_dn1 + dn2);
        M12 = csig12 + (t *  ssig2 -  csig2 * J12) * _ssig1 / _dn1;
        M21 = csig12 - (t * _ssig1 - _csig1 * J12) *  ssig2 /  dn2;
      }
    }

    if (outmask & AREA) {
      real
        B42 = Geodesic::SinCosSeries(false, ssig2, csig2, _C4a, nC4_);
      real salp12, calp12;
      if (_calp0 == 0 || _salp0 == 0) {
        // alp12 = alp2 - alp1, used in atan2 so no need to normalize
        salp12 = salp2 * _calp1 - calp2 * _salp1;
        calp12 = calp2 * _calp1 + salp2 * _salp1;
        // We used to include here some patch up code that purported to deal
        // with nearly meridional geodesics properly.  However, this turned out
        // to be wrong once _salp1 = -0 was allowed (via
        // Geodesic::InverseLine).  In fact, the calculation of {s,c}alp12
        // was already correct (following the IEEE rules for handling signed
        // zeros).  So the patch up code was unnecessary (as well as
        // dangerous).
      } else {
        // tan(alp) = tan(alp0) * sec(sig)
        // tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
        // = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
        // If csig12 > 0, write
        //   csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
        // else
        //   csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
        // No need to normalize
        salp12 = _calp0 * _salp0 *
          (csig12 <= 0 ? _csig1 * (1 - csig12) + ssig12 * _ssig1 :
           ssig12 * (_csig1 * ssig12 / (1 + csig12) + _ssig1));
        calp12 = Math::sq(_salp0) + Math::sq(_calp0) * _csig1 * csig2;
      }
      S12 = _c2 * atan2(salp12, calp12) + _A4 * (B42 - _B41);
    }

    return arcmode ? s12_a12 : sig12 / Math::degree();
  }

  void GeodesicLine::SetDistance(real s13) {
    _s13 = s13;
    real t;
    // This will set _a13 to NaN if the GeodesicLine doesn't have the
    // DISTANCE_IN capability.
    _a13 = GenPosition(false, _s13, 0u, t, t, t, t, t, t, t, t);
  }

  void GeodesicLine::SetArc(real a13) {
    _a13 = a13;
    // In case the GeodesicLine doesn't have the DISTANCE capability.
    _s13 = Math::NaN();
    real t;
    GenPosition(true, _a13, DISTANCE, t, t, t, _s13, t, t, t, t);
  }

  void GeodesicLine::GenSetDistance(bool arcmode, real s13_a13) {
    arcmode ? SetArc(s13_a13) : SetDistance(s13_a13);
  }

} // namespace GeographicLib