GeodesicExact.cpp 37.5 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/**
 * \file GeodesicExact.cpp
 * \brief Implementation for GeographicLib::GeodesicExact class
 *
 * Copyright (c) Charles Karney (2012-2018) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 *
 * This is a reformulation of the geodesic problem.  The notation is as
 * follows:
 * - at a general point (no suffix or 1 or 2 as suffix)
 *   - phi = latitude
 *   - beta = latitude on auxiliary sphere
 *   - omega = longitude on auxiliary sphere
 *   - lambda = longitude
 *   - alpha = azimuth of great circle
 *   - sigma = arc length along great circle
 *   - s = distance
 *   - tau = scaled distance (= sigma at multiples of pi/2)
 * - at northwards equator crossing
 *   - beta = phi = 0
 *   - omega = lambda = 0
 *   - alpha = alpha0
 *   - sigma = s = 0
 * - a 12 suffix means a difference, e.g., s12 = s2 - s1.
 * - s and c prefixes mean sin and cos
 **********************************************************************/

#include <GeographicLib/GeodesicExact.hpp>
#include <GeographicLib/GeodesicLineExact.hpp>

#if defined(_MSC_VER)
// Squelch warnings about potentially uninitialized local variables and
// constant conditional expressions
#  pragma warning (disable: 4701 4127)
#endif

namespace GeographicLib {

  using namespace std;

  GeodesicExact::GeodesicExact(real a, real f)
    : maxit2_(maxit1_ + Math::digits() + 10)
      // Underflow guard.  We require
      //   tiny_ * epsilon() > 0
      //   tiny_ + epsilon() == epsilon()
    , tiny_(sqrt(numeric_limits<real>::min()))
    , tol0_(numeric_limits<real>::epsilon())
      // Increase multiplier in defn of tol1_ from 100 to 200 to fix inverse
      // case 52.784459512564 0 -52.784459512563990912 179.634407464943777557
      // which otherwise failed for Visual Studio 10 (Release and Debug)
    , tol1_(200 * tol0_)
    , tol2_(sqrt(tol0_))
    , tolb_(tol0_ * tol2_)      // Check on bisection interval
    , xthresh_(1000 * tol2_)
    , _a(a)
    , _f(f)
    , _f1(1 - _f)
    , _e2(_f * (2 - _f))
    , _ep2(_e2 / Math::sq(_f1)) // e2 / (1 - e2)
    , _n(_f / ( 2 - _f))
    , _b(_a * _f1)
      // The Geodesic class substitutes atanh(sqrt(e2)) for asinh(sqrt(ep2)) in
      // the definition of _c2.  The latter is more accurate for very oblate
      // ellipsoids (which the Geodesic class does not attempt to handle).  Of
      // course, the area calculation in GeodesicExact is still based on a
      // series and so only holds for moderately oblate (or prolate)
      // ellipsoids.
    , _c2((Math::sq(_a) + Math::sq(_b) *
           (_f == 0 ? 1 :
            (_f > 0 ? Math::asinh(sqrt(_ep2)) : atan(sqrt(-_e2))) /
            sqrt(abs(_e2))))/2) // authalic radius squared
      // The sig12 threshold for "really short".  Using the auxiliary sphere
      // solution with dnm computed at (bet1 + bet2) / 2, the relative error in
      // the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
      // (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000.  For a
      // given f and sig12, the max error occurs for lines near the pole.  If
      // the old rule for computing dnm = (dn1 + dn2)/2 is used, then the error
      // increases by a factor of 2.)  Setting this equal to epsilon gives
      // sig12 = etol2.  Here 0.1 is a safety factor (error decreased by 100)
      // and max(0.001, abs(f)) stops etol2 getting too large in the nearly
      // spherical case.
    , _etol2(real(0.1) * tol2_ /
             sqrt( max(real(0.001), abs(_f)) * min(real(1), 1 - _f/2) / 2 ))
  {
    if (!(Math::isfinite(_a) && _a > 0))
      throw GeographicErr("Equatorial radius is not positive");
    if (!(Math::isfinite(_b) && _b > 0))
      throw GeographicErr("Polar semi-axis is not positive");
    C4coeff();
  }

  const GeodesicExact& GeodesicExact::WGS84() {
    static const GeodesicExact wgs84(Constants::WGS84_a(),
                                     Constants::WGS84_f());
    return wgs84;
  }

  Math::real GeodesicExact::CosSeries(real sinx, real cosx,
                                      const real c[], int n) {
    // Evaluate
    // y = sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
    // using Clenshaw summation.
    // Approx operation count = (n + 5) mult and (2 * n + 2) add
    c += n ;                    // Point to one beyond last element
    real
      ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x)
      y0 = n & 1 ? *--c : 0, y1 = 0;          // accumulators for sum
    // Now n is even
    n /= 2;
    while (n--) {
      // Unroll loop x 2, so accumulators return to their original role
      y1 = ar * y0 - y1 + *--c;
      y0 = ar * y1 - y0 + *--c;
    }
    return cosx * (y0 - y1);    // cos(x) * (y0 - y1)
  }

  GeodesicLineExact GeodesicExact::Line(real lat1, real lon1, real azi1,
                                        unsigned caps) const {
    return GeodesicLineExact(*this, lat1, lon1, azi1, caps);
  }

  Math::real GeodesicExact::GenDirect(real lat1, real lon1, real azi1,
                                      bool arcmode, real s12_a12,
                                      unsigned outmask,
                                      real& lat2, real& lon2, real& azi2,
                                      real& s12, real& m12,
                                      real& M12, real& M21,
                                      real& S12) const {
    // Automatically supply DISTANCE_IN if necessary
    if (!arcmode) outmask |= DISTANCE_IN;
    return GeodesicLineExact(*this, lat1, lon1, azi1, outmask)
      .                         // Note the dot!
      GenPosition(arcmode, s12_a12, outmask,
                  lat2, lon2, azi2, s12, m12, M12, M21, S12);
  }

  GeodesicLineExact GeodesicExact::GenDirectLine(real lat1, real lon1,
                                                 real azi1,
                                                 bool arcmode, real s12_a12,
                                                 unsigned caps) const {
    azi1 = Math::AngNormalize(azi1);
    real salp1, calp1;
    // Guard against underflow in salp0.  Also -0 is converted to +0.
    Math::sincosd(Math::AngRound(azi1), salp1, calp1);
    // Automatically supply DISTANCE_IN if necessary
    if (!arcmode) caps |= DISTANCE_IN;
    return GeodesicLineExact(*this, lat1, lon1, azi1, salp1, calp1,
                             caps, arcmode, s12_a12);
  }

  GeodesicLineExact GeodesicExact::DirectLine(real lat1, real lon1,
                                              real azi1, real s12,
                                              unsigned caps) const {
    return GenDirectLine(lat1, lon1, azi1, false, s12, caps);
  }

  GeodesicLineExact GeodesicExact::ArcDirectLine(real lat1, real lon1,
                                                 real azi1, real a12,
                                                 unsigned caps) const {
    return GenDirectLine(lat1, lon1, azi1, true, a12, caps);
  }

  Math::real GeodesicExact::GenInverse(real lat1, real lon1,
                                       real lat2, real lon2,
                                       unsigned outmask, real& s12,
                                       real& salp1, real& calp1,
                                       real& salp2, real& calp2,
                                       real& m12, real& M12, real& M21,
                                       real& S12) const {
    // Compute longitude difference (AngDiff does this carefully).  Result is
    // in [-180, 180] but -180 is only for west-going geodesics.  180 is for
    // east-going and meridional geodesics.
    real lon12s, lon12 = Math::AngDiff(lon1, lon2, lon12s);
    // Make longitude difference positive.
    int lonsign = lon12 >= 0 ? 1 : -1;
    // If very close to being on the same half-meridian, then make it so.
    lon12 = lonsign * Math::AngRound(lon12);
    lon12s = Math::AngRound((180 - lon12) - lonsign * lon12s);
    real
      lam12 = lon12 * Math::degree(),
      slam12, clam12;
    if (lon12 > 90) {
      Math::sincosd(lon12s, slam12, clam12);
      clam12 = -clam12;
    } else
      Math::sincosd(lon12, slam12, clam12);

    // If really close to the equator, treat as on equator.
    lat1 = Math::AngRound(Math::LatFix(lat1));
    lat2 = Math::AngRound(Math::LatFix(lat2));
    // Swap points so that point with higher (abs) latitude is point 1
    // If one latitude is a nan, then it becomes lat1.
    int swapp = abs(lat1) < abs(lat2) ? -1 : 1;
    if (swapp < 0) {
      lonsign *= -1;
      swap(lat1, lat2);
    }
    // Make lat1 <= 0
    int latsign = lat1 < 0 ? 1 : -1;
    lat1 *= latsign;
    lat2 *= latsign;
    // Now we have
    //
    //     0 <= lon12 <= 180
    //     -90 <= lat1 <= 0
    //     lat1 <= lat2 <= -lat1
    //
    // longsign, swapp, latsign register the transformation to bring the
    // coordinates to this canonical form.  In all cases, 1 means no change was
    // made.  We make these transformations so that there are few cases to
    // check, e.g., on verifying quadrants in atan2.  In addition, this
    // enforces some symmetries in the results returned.

    real sbet1, cbet1, sbet2, cbet2, s12x, m12x;
    // Initialize for the meridian.  No longitude calculation is done in this
    // case to let the parameter default to 0.
    EllipticFunction E(-_ep2);

    Math::sincosd(lat1, sbet1, cbet1); sbet1 *= _f1;
    // Ensure cbet1 = +epsilon at poles; doing the fix on beta means that sig12
    // will be <= 2*tiny for two points at the same pole.
    Math::norm(sbet1, cbet1); cbet1 = max(tiny_, cbet1);

    Math::sincosd(lat2, sbet2, cbet2); sbet2 *= _f1;
    // Ensure cbet2 = +epsilon at poles
    Math::norm(sbet2, cbet2); cbet2 = max(tiny_, cbet2);

    // If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
    // |bet1| - |bet2|.  Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
    // a better measure.  This logic is used in assigning calp2 in Lambda12.
    // Sometimes these quantities vanish and in that case we force bet2 = +/-
    // bet1 exactly.  An example where is is necessary is the inverse problem
    // 48.522876735459 0 -48.52287673545898293 179.599720456223079643
    // which failed with Visual Studio 10 (Release and Debug)

    if (cbet1 < -sbet1) {
      if (cbet2 == cbet1)
        sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
    } else {
      if (abs(sbet2) == -sbet1)
        cbet2 = cbet1;
    }

    real
      dn1 = (_f >= 0 ? sqrt(1 + _ep2 * Math::sq(sbet1)) :
             sqrt(1 - _e2 * Math::sq(cbet1)) / _f1),
      dn2 = (_f >= 0 ? sqrt(1 + _ep2 * Math::sq(sbet2)) :
             sqrt(1 - _e2 * Math::sq(cbet2)) / _f1);

    real a12, sig12;

    bool meridian = lat1 == -90 || slam12 == 0;

    if (meridian) {

      // Endpoints are on a single full meridian, so the geodesic might lie on
      // a meridian.

      calp1 = clam12; salp1 = slam12; // Head to the target longitude
      calp2 = 1; salp2 = 0;           // At the target we're heading north

      real
        // tan(bet) = tan(sig) * cos(alp)
        ssig1 = sbet1, csig1 = calp1 * cbet1,
        ssig2 = sbet2, csig2 = calp2 * cbet2;

      // sig12 = sig2 - sig1
      sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2),
                                 csig1 * csig2 + ssig1 * ssig2);
      {
        real dummy;
        Lengths(E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
                cbet1, cbet2, outmask | REDUCEDLENGTH,
                s12x, m12x, dummy, M12, M21);
      }
      // Add the check for sig12 since zero length geodesics might yield m12 <
      // 0.  Test case was
      //
      //    echo 20.001 0 20.001 0 | GeodSolve -i
      //
      // In fact, we will have sig12 > pi/2 for meridional geodesic which is
      // not a shortest path.
      if (sig12 < 1 || m12x >= 0) {
        // Need at least 2, to handle 90 0 90 180
        if (sig12 < 3 * tiny_)
          sig12 = m12x = s12x = 0;
        m12x *= _b;
        s12x *= _b;
        a12 = sig12 / Math::degree();
      } else
        // m12 < 0, i.e., prolate and too close to anti-podal
        meridian = false;
    }

    // somg12 > 1 marks that it needs to be calculated
    real omg12 = 0, somg12 = 2, comg12 = 0;
    if (!meridian &&
        sbet1 == 0 &&   // and sbet2 == 0
        (_f <= 0 || lon12s >= _f * 180)) {

      // Geodesic runs along equator
      calp1 = calp2 = 0; salp1 = salp2 = 1;
      s12x = _a * lam12;
      sig12 = omg12 = lam12 / _f1;
      m12x = _b * sin(sig12);
      if (outmask & GEODESICSCALE)
        M12 = M21 = cos(sig12);
      a12 = lon12 / _f1;

    } else if (!meridian) {

      // Now point1 and point2 belong within a hemisphere bounded by a
      // meridian and geodesic is neither meridional or equatorial.

      // Figure a starting point for Newton's method
      real dnm;
      sig12 = InverseStart(E, sbet1, cbet1, dn1, sbet2, cbet2, dn2,
                           lam12, slam12, clam12,
                           salp1, calp1, salp2, calp2, dnm);

      if (sig12 >= 0) {
        // Short lines (InverseStart sets salp2, calp2, dnm)
        s12x = sig12 * _b * dnm;
        m12x = Math::sq(dnm) * _b * sin(sig12 / dnm);
        if (outmask & GEODESICSCALE)
          M12 = M21 = cos(sig12 / dnm);
        a12 = sig12 / Math::degree();
        omg12 = lam12 / (_f1 * dnm);
      } else {

        // Newton's method.  This is a straightforward solution of f(alp1) =
        // lambda12(alp1) - lam12 = 0 with one wrinkle.  f(alp) has exactly one
        // root in the interval (0, pi) and its derivative is positive at the
        // root.  Thus f(alp) is positive for alp > alp1 and negative for alp <
        // alp1.  During the course of the iteration, a range (alp1a, alp1b) is
        // maintained which brackets the root and with each evaluation of
        // f(alp) the range is shrunk, if possible.  Newton's method is
        // restarted whenever the derivative of f is negative (because the new
        // value of alp1 is then further from the solution) or if the new
        // estimate of alp1 lies outside (0,pi); in this case, the new starting
        // guess is taken to be (alp1a + alp1b) / 2.
        //
        // initial values to suppress warnings (if loop is executed 0 times)
        real ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, domg12 = 0;
        unsigned numit = 0;
        // Bracketing range
        real salp1a = tiny_, calp1a = 1, salp1b = tiny_, calp1b = -1;
        for (bool tripn = false, tripb = false;
             numit < maxit2_ || GEOGRAPHICLIB_PANIC;
             ++numit) {
          // 1/4 meridian = 10e6 m and random input.  max err is estimated max
          // error in nm (checking solution of inverse problem by direct
          // solution).  iter is mean and sd of number of iterations
          //
          //           max   iter
          // log2(b/a) err mean  sd
          //    -7     387 5.33 3.68
          //    -6     345 5.19 3.43
          //    -5     269 5.00 3.05
          //    -4     210 4.76 2.44
          //    -3     115 4.55 1.87
          //    -2      69 4.35 1.38
          //    -1      36 4.05 1.03
          //     0      15 0.01 0.13
          //     1      25 5.10 1.53
          //     2      96 5.61 2.09
          //     3     318 6.02 2.74
          //     4     985 6.24 3.22
          //     5    2352 6.32 3.44
          //     6    6008 6.30 3.45
          //     7   19024 6.19 3.30
          real dv;
          real v = Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
                            slam12, clam12,
                            salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
                            E, domg12, numit < maxit1_, dv);
          // Reversed test to allow escape with NaNs
          if (tripb || !(abs(v) >= (tripn ? 8 : 1) * tol0_)) break;
          // Update bracketing values
          if (v > 0 && (numit > maxit1_ || calp1/salp1 > calp1b/salp1b))
            { salp1b = salp1; calp1b = calp1; }
          else if (v < 0 && (numit > maxit1_ || calp1/salp1 < calp1a/salp1a))
            { salp1a = salp1; calp1a = calp1; }
          if (numit < maxit1_ && dv > 0) {
            real
              dalp1 = -v/dv;
            real
              sdalp1 = sin(dalp1), cdalp1 = cos(dalp1),
              nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
            if (nsalp1 > 0 && abs(dalp1) < Math::pi()) {
              calp1 = calp1 * cdalp1 - salp1 * sdalp1;
              salp1 = nsalp1;
              Math::norm(salp1, calp1);
              // In some regimes we don't get quadratic convergence because
              // slope -> 0.  So use convergence conditions based on epsilon
              // instead of sqrt(epsilon).
              tripn = abs(v) <= 16 * tol0_;
              continue;
            }
          }
          // Either dv was not positive or updated value was outside legal
          // range.  Use the midpoint of the bracket as the next estimate.
          // This mechanism is not needed for the WGS84 ellipsoid, but it does
          // catch problems with more eccentric ellipsoids.  Its efficacy is
          // such for the WGS84 test set with the starting guess set to alp1 =
          // 90deg:
          // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
          // WGS84 and random input: mean = 4.74, sd = 0.99
          salp1 = (salp1a + salp1b)/2;
          calp1 = (calp1a + calp1b)/2;
          Math::norm(salp1, calp1);
          tripn = false;
          tripb = (abs(salp1a - salp1) + (calp1a - calp1) < tolb_ ||
                   abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_);
        }
        {
          real dummy;
          Lengths(E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
                  cbet1, cbet2, outmask, s12x, m12x, dummy, M12, M21);
        }
        m12x *= _b;
        s12x *= _b;
        a12 = sig12 / Math::degree();
        if (outmask & AREA) {
          // omg12 = lam12 - domg12
          real sdomg12 = sin(domg12), cdomg12 = cos(domg12);
          somg12 = slam12 * cdomg12 - clam12 * sdomg12;
          comg12 = clam12 * cdomg12 + slam12 * sdomg12;
        }
      }
    }

    if (outmask & DISTANCE)
      s12 = 0 + s12x;           // Convert -0 to 0

    if (outmask & REDUCEDLENGTH)
      m12 = 0 + m12x;           // Convert -0 to 0

    if (outmask & AREA) {
      real
        // From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
        salp0 = salp1 * cbet1,
        calp0 = Math::hypot(calp1, salp1 * sbet1); // calp0 > 0
      real alp12;
      if (calp0 != 0 && salp0 != 0) {
        real
          // From Lambda12: tan(bet) = tan(sig) * cos(alp)
          ssig1 = sbet1, csig1 = calp1 * cbet1,
          ssig2 = sbet2, csig2 = calp2 * cbet2,
          k2 = Math::sq(calp0) * _ep2,
          eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2),
          // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
          A4 = Math::sq(_a) * calp0 * salp0 * _e2;
        Math::norm(ssig1, csig1);
        Math::norm(ssig2, csig2);
        real C4a[nC4_];
        C4f(eps, C4a);
        real
          B41 = CosSeries(ssig1, csig1, C4a, nC4_),
          B42 = CosSeries(ssig2, csig2, C4a, nC4_);
        S12 = A4 * (B42 - B41);
      } else
        // Avoid problems with indeterminate sig1, sig2 on equator
        S12 = 0;

      if (!meridian) {
        if (somg12 > 1) {
          somg12 = sin(omg12); comg12 = cos(omg12);
        }
      }

      if (!meridian &&
          // omg12 < 3/4 * pi
          comg12 > -real(0.7071) &&     // Long difference not too big
          sbet2 - sbet1 < real(1.75)) { // Lat difference not too big
        // Use tan(Gamma/2) = tan(omg12/2)
        // * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
        // with tan(x/2) = sin(x)/(1+cos(x))
        real domg12 = 1 + comg12, dbet1 = 1 + cbet1, dbet2 = 1 + cbet2;
        alp12 = 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
                           domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) );
      } else {
        // alp12 = alp2 - alp1, used in atan2 so no need to normalize
        real
          salp12 = salp2 * calp1 - calp2 * salp1,
          calp12 = calp2 * calp1 + salp2 * salp1;
        // The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
        // salp12 = -0 and alp12 = -180.  However this depends on the sign
        // being attached to 0 correctly.  The following ensures the correct
        // behavior.
        if (salp12 == 0 && calp12 < 0) {
          salp12 = tiny_ * calp1;
          calp12 = -1;
        }
        alp12 = atan2(salp12, calp12);
      }
      S12 += _c2 * alp12;
      S12 *= swapp * lonsign * latsign;
      // Convert -0 to 0
      S12 += 0;
    }

    // Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
    if (swapp < 0) {
      swap(salp1, salp2);
      swap(calp1, calp2);
      if (outmask & GEODESICSCALE)
        swap(M12, M21);
    }

    salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
    salp2 *= swapp * lonsign; calp2 *= swapp * latsign;

    // Returned value in [0, 180]
    return a12;
  }

  Math::real GeodesicExact::GenInverse(real lat1, real lon1,
                                       real lat2, real lon2,
                                       unsigned outmask,
                                       real& s12, real& azi1, real& azi2,
                                       real& m12, real& M12, real& M21,
                                       real& S12) const {
    outmask &= OUT_MASK;
    real salp1, calp1, salp2, calp2,
      a12 =  GenInverse(lat1, lon1, lat2, lon2,
                        outmask, s12, salp1, calp1, salp2, calp2,
                        m12, M12, M21, S12);
    if (outmask & AZIMUTH) {
      azi1 = Math::atan2d(salp1, calp1);
      azi2 = Math::atan2d(salp2, calp2);
    }
    return a12;
  }

  GeodesicLineExact GeodesicExact::InverseLine(real lat1, real lon1,
                                               real lat2, real lon2,
                                               unsigned caps) const {
    real t, salp1, calp1, salp2, calp2,
      a12 = GenInverse(lat1, lon1, lat2, lon2,
                       // No need to specify AZIMUTH here
                       0u, t, salp1, calp1, salp2, calp2,
                       t, t, t, t),
      azi1 = Math::atan2d(salp1, calp1);
    // Ensure that a12 can be converted to a distance
    if (caps & (OUT_MASK & DISTANCE_IN)) caps |= DISTANCE;
    return GeodesicLineExact(*this, lat1, lon1, azi1, salp1, calp1, caps,
                             true, a12);
  }

  void GeodesicExact::Lengths(const EllipticFunction& E,
                              real sig12,
                              real ssig1, real csig1, real dn1,
                              real ssig2, real csig2, real dn2,
                              real cbet1, real cbet2, unsigned outmask,
                              real& s12b, real& m12b, real& m0,
                              real& M12, real& M21) const {
    // Return m12b = (reduced length)/_b; also calculate s12b = distance/_b,
    // and m0 = coefficient of secular term in expression for reduced length.

    outmask &= OUT_ALL;
    // outmask & DISTANCE: set s12b
    // outmask & REDUCEDLENGTH: set m12b & m0
    // outmask & GEODESICSCALE: set M12 & M21

    // It's OK to have repeated dummy arguments,
    // e.g., s12b = m0 = M12 = M21 = dummy

    if (outmask & DISTANCE)
      // Missing a factor of _b
      s12b = E.E() / (Math::pi() / 2) *
        (sig12 + (E.deltaE(ssig2, csig2, dn2) - E.deltaE(ssig1, csig1, dn1)));
    if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
      real
        m0x = - E.k2() * E.D() / (Math::pi() / 2),
        J12 = m0x *
        (sig12 + (E.deltaD(ssig2, csig2, dn2) - E.deltaD(ssig1, csig1, dn1)));
      if (outmask & REDUCEDLENGTH) {
        m0 = m0x;
        // Missing a factor of _b.  Add parens around (csig1 * ssig2) and
        // (ssig1 * csig2) to ensure accurate cancellation in the case of
        // coincident points.
        m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
          csig1 * csig2 * J12;
      }
      if (outmask & GEODESICSCALE) {
        real csig12 = csig1 * csig2 + ssig1 * ssig2;
        real t = _ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
        M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
        M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
      }
    }
  }

  Math::real GeodesicExact::Astroid(real x, real y) {
    // Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
    // This solution is adapted from Geocentric::Reverse.
    real k;
    real
      p = Math::sq(x),
      q = Math::sq(y),
      r = (p + q - 1) / 6;
    if ( !(q == 0 && r <= 0) ) {
      real
        // Avoid possible division by zero when r = 0 by multiplying equations
        // for s and t by r^3 and r, resp.
        S = p * q / 4,            // S = r^3 * s
        r2 = Math::sq(r),
        r3 = r * r2,
        // The discriminant of the quadratic equation for T3.  This is zero on
        // the evolute curve p^(1/3)+q^(1/3) = 1
        disc = S * (S + 2 * r3);
      real u = r;
      if (disc >= 0) {
        real T3 = S + r3;
        // Pick the sign on the sqrt to maximize abs(T3).  This minimizes loss
        // of precision due to cancellation.  The result is unchanged because
        // of the way the T is used in definition of u.
        T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); // T3 = (r * t)^3
        // N.B. cbrt always returns the real root.  cbrt(-8) = -2.
        real T = Math::cbrt(T3); // T = r * t
        // T can be zero; but then r2 / T -> 0.
        u += T + (T != 0 ? r2 / T : 0);
      } else {
        // T is complex, but the way u is defined the result is real.
        real ang = atan2(sqrt(-disc), -(S + r3));
        // There are three possible cube roots.  We choose the root which
        // avoids cancellation.  Note that disc < 0 implies that r < 0.
        u += 2 * r * cos(ang / 3);
      }
      real
        v = sqrt(Math::sq(u) + q),    // guaranteed positive
        // Avoid loss of accuracy when u < 0.
        uv = u < 0 ? q / (v - u) : u + v, // u+v, guaranteed positive
        w = (uv - q) / (2 * v);           // positive?
      // Rearrange expression for k to avoid loss of accuracy due to
      // subtraction.  Division by 0 not possible because uv > 0, w >= 0.
      k = uv / (sqrt(uv + Math::sq(w)) + w);   // guaranteed positive
    } else {               // q == 0 && r <= 0
      // y = 0 with |x| <= 1.  Handle this case directly.
      // for y small, positive root is k = abs(y)/sqrt(1-x^2)
      k = 0;
    }
    return k;
  }

  Math::real GeodesicExact::InverseStart(EllipticFunction& E,
                                         real sbet1, real cbet1, real dn1,
                                         real sbet2, real cbet2, real dn2,
                                         real lam12, real slam12, real clam12,
                                         real& salp1, real& calp1,
                                         // Only updated if return val >= 0
                                         real& salp2, real& calp2,
                                         // Only updated for short lines
                                         real& dnm) const {
    // Return a starting point for Newton's method in salp1 and calp1 (function
    // value is -1).  If Newton's method doesn't need to be used, return also
    // salp2 and calp2 and function value is sig12.
    real
      sig12 = -1,               // Return value
      // bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
      sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
      cbet12 = cbet2 * cbet1 + sbet2 * sbet1;
    real sbet12a = sbet2 * cbet1 + cbet2 * sbet1;
    bool shortline = cbet12 >= 0 && sbet12 < real(0.5) &&
      cbet2 * lam12 < real(0.5);
    real somg12, comg12;
    if (shortline) {
      real sbetm2 = Math::sq(sbet1 + sbet2);
      // sin((bet1+bet2)/2)^2
      // =  (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
      sbetm2 /= sbetm2 + Math::sq(cbet1 + cbet2);
      dnm = sqrt(1 + _ep2 * sbetm2);
      real omg12 = lam12 / (_f1 * dnm);
      somg12 = sin(omg12); comg12 = cos(omg12);
    } else {
      somg12 = slam12; comg12 = clam12;
    }

    salp1 = cbet2 * somg12;
    calp1 = comg12 >= 0 ?
      sbet12 + cbet2 * sbet1 * Math::sq(somg12) / (1 + comg12) :
      sbet12a - cbet2 * sbet1 * Math::sq(somg12) / (1 - comg12);

    real
      ssig12 = Math::hypot(salp1, calp1),
      csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;

    if (shortline && ssig12 < _etol2) {
      // really short lines
      salp2 = cbet1 * somg12;
      calp2 = sbet12 - cbet1 * sbet2 *
        (comg12 >= 0 ? Math::sq(somg12) / (1 + comg12) : 1 - comg12);
      Math::norm(salp2, calp2);
      // Set return value
      sig12 = atan2(ssig12, csig12);
    } else if (abs(_n) > real(0.1) || // Skip astroid calc if too eccentric
               csig12 >= 0 ||
               ssig12 >= 6 * abs(_n) * Math::pi() * Math::sq(cbet1)) {
      // Nothing to do, zeroth order spherical approximation is OK
    } else {
      // Scale lam12 and bet2 to x, y coordinate system where antipodal point
      // is at origin and singular point is at y = 0, x = -1.
      real y, lamscale, betscale;
      // Volatile declaration needed to fix inverse case
      // 56.320923501171 0 -56.320923501171 179.664747671772880215
      // which otherwise fails with g++ 4.4.4 x86 -O3
      GEOGRAPHICLIB_VOLATILE real x;
      real lam12x = atan2(-slam12, -clam12); // lam12 - pi
      if (_f >= 0) {            // In fact f == 0 does not get here
        // x = dlong, y = dlat
        {
          real k2 = Math::sq(sbet1) * _ep2;
          E.Reset(-k2, -_ep2, 1 + k2, 1 + _ep2);
          lamscale = _e2/_f1 * cbet1 * 2 * E.H();
        }
        betscale = lamscale * cbet1;

        x = lam12x / lamscale;
        y = sbet12a / betscale;
      } else {                  // _f < 0
        // x = dlat, y = dlong
        real
          cbet12a = cbet2 * cbet1 - sbet2 * sbet1,
          bet12a = atan2(sbet12a, cbet12a);
        real m12b, m0, dummy;
        // In the case of lon12 = 180, this repeats a calculation made in
        // Inverse.
        Lengths(E, Math::pi() + bet12a,
                sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
                cbet1, cbet2, REDUCEDLENGTH, dummy, m12b, m0, dummy, dummy);
        x = -1 + m12b / (cbet1 * cbet2 * m0 * Math::pi());
        betscale = x < -real(0.01) ? sbet12a / x :
          -_f * Math::sq(cbet1) * Math::pi();
        lamscale = betscale / cbet1;
        y = lam12x / lamscale;
      }

      if (y > -tol1_ && x > -1 - xthresh_) {
        // strip near cut
        // Need real(x) here to cast away the volatility of x for min/max
        if (_f >= 0) {
          salp1 = min(real(1), -real(x)); calp1 = - sqrt(1 - Math::sq(salp1));
        } else {
          calp1 = max(real(x > -tol1_ ? 0 : -1), real(x));
          salp1 = sqrt(1 - Math::sq(calp1));
        }
      } else {
        // Estimate alp1, by solving the astroid problem.
        //
        // Could estimate alpha1 = theta + pi/2, directly, i.e.,
        //   calp1 = y/k; salp1 = -x/(1+k);  for _f >= 0
        //   calp1 = x/(1+k); salp1 = -y/k;  for _f < 0 (need to check)
        //
        // However, it's better to estimate omg12 from astroid and use
        // spherical formula to compute alp1.  This reduces the mean number of
        // Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
        // (min 0 max 5).  The changes in the number of iterations are as
        // follows:
        //
        // change percent
        //    1       5
        //    0      78
        //   -1      16
        //   -2       0.6
        //   -3       0.04
        //   -4       0.002
        //
        // The histogram of iterations is (m = number of iterations estimating
        // alp1 directly, n = number of iterations estimating via omg12, total
        // number of trials = 148605):
        //
        //  iter    m      n
        //    0   148    186
        //    1 13046  13845
        //    2 93315 102225
        //    3 36189  32341
        //    4  5396      7
        //    5   455      1
        //    6    56      0
        //
        // Because omg12 is near pi, estimate work with omg12a = pi - omg12
        real k = Astroid(x, y);
        real
          omg12a = lamscale * ( _f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
        somg12 = sin(omg12a); comg12 = -cos(omg12a);
        // Update spherical estimate of alp1 using omg12 instead of lam12
        salp1 = cbet2 * somg12;
        calp1 = sbet12a - cbet2 * sbet1 * Math::sq(somg12) / (1 - comg12);
      }
    }
    // Sanity check on starting guess.  Backwards check allows NaN through.
    if (!(salp1 <= 0))
      Math::norm(salp1, calp1);
    else {
      salp1 = 1; calp1 = 0;
    }
    return sig12;
  }

  Math::real GeodesicExact::Lambda12(real sbet1, real cbet1, real dn1,
                                     real sbet2, real cbet2, real dn2,
                                     real salp1, real calp1,
                                     real slam120, real clam120,
                                     real& salp2, real& calp2,
                                     real& sig12,
                                     real& ssig1, real& csig1,
                                     real& ssig2, real& csig2,
                                     EllipticFunction& E,
                                     real& domg12,
                                     bool diffp, real& dlam12) const
    {

    if (sbet1 == 0 && calp1 == 0)
      // Break degeneracy of equatorial line.  This case has already been
      // handled.
      calp1 = -tiny_;

    real
      // sin(alp1) * cos(bet1) = sin(alp0)
      salp0 = salp1 * cbet1,
      calp0 = Math::hypot(calp1, salp1 * sbet1); // calp0 > 0

    real somg1, comg1, somg2, comg2, somg12, comg12, cchi1, cchi2, lam12;
    // tan(bet1) = tan(sig1) * cos(alp1)
    // tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
    ssig1 = sbet1; somg1 = salp0 * sbet1;
    csig1 = comg1 = calp1 * cbet1;
    // Without normalization we have schi1 = somg1.
    cchi1 = _f1 * dn1 * comg1;
    Math::norm(ssig1, csig1);
    // Math::norm(somg1, comg1); -- don't need to normalize!
    // Math::norm(schi1, cchi1); -- don't need to normalize!

    // Enforce symmetries in the case abs(bet2) = -bet1.  Need to be careful
    // about this case, since this can yield singularities in the Newton
    // iteration.
    // sin(alp2) * cos(bet2) = sin(alp0)
    salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1;
    // calp2 = sqrt(1 - sq(salp2))
    //       = sqrt(sq(calp0) - sq(sbet2)) / cbet2
    // and subst for calp0 and rearrange to give (choose positive sqrt
    // to give alp2 in [0, pi/2]).
    calp2 = cbet2 != cbet1 || abs(sbet2) != -sbet1 ?
      sqrt(Math::sq(calp1 * cbet1) +
           (cbet1 < -sbet1 ?
            (cbet2 - cbet1) * (cbet1 + cbet2) :
            (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 :
      abs(calp1);
    // tan(bet2) = tan(sig2) * cos(alp2)
    // tan(omg2) = sin(alp0) * tan(sig2).
    ssig2 = sbet2; somg2 = salp0 * sbet2;
    csig2 = comg2 = calp2 * cbet2;
    // Without normalization we have schi2 = somg2.
    cchi2 = _f1 * dn2 * comg2;
    Math::norm(ssig2, csig2);
    // Math::norm(somg2, comg2); -- don't need to normalize!
    // Math::norm(schi2, cchi2); -- don't need to normalize!

    // sig12 = sig2 - sig1, limit to [0, pi]
    sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2),
                               csig1 * csig2 + ssig1 * ssig2);

    // omg12 = omg2 - omg1, limit to [0, pi]
    somg12 = max(real(0), comg1 * somg2 - somg1 * comg2);
    comg12 =              comg1 * comg2 + somg1 * somg2;
    real k2 = Math::sq(calp0) * _ep2;
    E.Reset(-k2, -_ep2, 1 + k2, 1 + _ep2);
    // chi12 = chi2 - chi1, limit to [0, pi]
    real
      schi12 = max(real(0), cchi1 * somg2 - somg1 * cchi2),
      cchi12 =              cchi1 * cchi2 + somg1 * somg2;
    // eta = chi12 - lam120
    real eta = atan2(schi12 * clam120 - cchi12 * slam120,
                     cchi12 * clam120 + schi12 * slam120);
    real deta12 = -_e2/_f1 * salp0 * E.H() / (Math::pi() / 2) *
      (sig12 + (E.deltaH(ssig2, csig2, dn2) - E.deltaH(ssig1, csig1, dn1)));
    lam12 = eta + deta12;
    // domg12 = deta12 + chi12 - omg12
    domg12 = deta12 + atan2(schi12 * comg12 - cchi12 * somg12,
                            cchi12 * comg12 + schi12 * somg12);
    if (diffp) {
      if (calp2 == 0)
        dlam12 = - 2 * _f1 * dn1 / sbet1;
      else {
        real dummy;
        Lengths(E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
                cbet1, cbet2, REDUCEDLENGTH,
                dummy, dlam12, dummy, dummy, dummy);
        dlam12 *= _f1 / (calp2 * cbet2);
      }
    }

    return lam12;
  }

  void GeodesicExact::C4f(real eps, real c[]) const {
    // Evaluate C4 coeffs
    // Elements c[0] thru c[nC4_ - 1] are set
    real mult = 1;
    int o = 0;
    for (int l = 0; l < nC4_; ++l) { // l is index of C4[l]
      int m = nC4_ - l - 1;          // order of polynomial in eps
      c[l] = mult * Math::polyval(m, _C4x + o, eps);
      o += m + 1;
      mult *= eps;
    }
    // Post condition: o == nC4x_
    if  (!(o == nC4x_))
      throw GeographicErr("C4 misalignment");
  }

} // namespace GeographicLib