EllipticFunction.cpp 18.9 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/**
 * \file EllipticFunction.cpp
 * \brief Implementation for GeographicLib::EllipticFunction class
 *
 * Copyright (c) Charles Karney (2008-2019) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/

#include <GeographicLib/EllipticFunction.hpp>

#if defined(_MSC_VER)
// Squelch warnings about constant conditional expressions
#  pragma warning (disable: 4127)
#endif

namespace GeographicLib {

  using namespace std;

  /*
   * Implementation of methods given in
   *
   *   B. C. Carlson
   *   Computation of elliptic integrals
   *   Numerical Algorithms 10, 13-26 (1995)
   */

  Math::real EllipticFunction::RF(real x, real y, real z) {
    // Carlson, eqs 2.2 - 2.7
    static const real tolRF =
      pow(3 * numeric_limits<real>::epsilon() * real(0.01), 1/real(8));
    real
      A0 = (x + y + z)/3,
      An = A0,
      Q = max(max(abs(A0-x), abs(A0-y)), abs(A0-z)) / tolRF,
      x0 = x,
      y0 = y,
      z0 = z,
      mul = 1;
    while (Q >= mul * abs(An)) {
      // Max 6 trips
      real lam = sqrt(x0)*sqrt(y0) + sqrt(y0)*sqrt(z0) + sqrt(z0)*sqrt(x0);
      An = (An + lam)/4;
      x0 = (x0 + lam)/4;
      y0 = (y0 + lam)/4;
      z0 = (z0 + lam)/4;
      mul *= 4;
    }
    real
      X = (A0 - x) / (mul * An),
      Y = (A0 - y) / (mul * An),
      Z = - (X + Y),
      E2 = X*Y - Z*Z,
      E3 = X*Y*Z;
    // https://dlmf.nist.gov/19.36.E1
    // Polynomial is
    // (1 - E2/10 + E3/14 + E2^2/24 - 3*E2*E3/44
    //    - 5*E2^3/208 + 3*E3^2/104 + E2^2*E3/16)
    // convert to Horner form...
    return (E3 * (6930 * E3 + E2 * (15015 * E2 - 16380) + 17160) +
            E2 * ((10010 - 5775 * E2) * E2 - 24024) + 240240) /
      (240240 * sqrt(An));
  }

  Math::real EllipticFunction::RF(real x, real y) {
    // Carlson, eqs 2.36 - 2.38
    static const real tolRG0 =
      real(2.7) * sqrt((numeric_limits<real>::epsilon() * real(0.01)));
    real xn = sqrt(x), yn = sqrt(y);
    if (xn < yn) swap(xn, yn);
    while (abs(xn-yn) > tolRG0 * xn) {
      // Max 4 trips
      real t = (xn + yn) /2;
      yn = sqrt(xn * yn);
      xn = t;
    }
    return Math::pi() / (xn + yn);
  }

  Math::real EllipticFunction::RC(real x, real y) {
    // Defined only for y != 0 and x >= 0.
    return ( !(x >= y) ?        // x < y  and catch nans
             // https://dlmf.nist.gov/19.2.E18
             atan(sqrt((y - x) / x)) / sqrt(y - x) :
             ( x == y ? 1 / sqrt(y) :
               Math::asinh( y > 0 ?
                            // https://dlmf.nist.gov/19.2.E19
                            // atanh(sqrt((x - y) / x))
                            sqrt((x - y) / y) :
                            // https://dlmf.nist.gov/19.2.E20
                            // atanh(sqrt(x / (x - y)))
                            sqrt(-x / y) ) / sqrt(x - y) ) );
  }

  Math::real EllipticFunction::RG(real x, real y, real z) {
    if (z == 0)
      swap(y, z);
    // Carlson, eq 1.7
    return (z * RF(x, y, z) - (x-z) * (y-z) * RD(x, y, z) / 3
            + sqrt(x * y / z)) / 2;
  }

  Math::real EllipticFunction::RG(real x, real y) {
    // Carlson, eqs 2.36 - 2.39
    static const real tolRG0 =
      real(2.7) * sqrt((numeric_limits<real>::epsilon() * real(0.01)));
    real
      x0 = sqrt(max(x, y)),
      y0 = sqrt(min(x, y)),
      xn = x0,
      yn = y0,
      s = 0,
      mul = real(0.25);
    while (abs(xn-yn) > tolRG0 * xn) {
      // Max 4 trips
      real t = (xn + yn) /2;
      yn = sqrt(xn * yn);
      xn = t;
      mul *= 2;
      t = xn - yn;
      s += mul * t * t;
    }
    return (Math::sq( (x0 + y0)/2 ) - s) * Math::pi() / (2 * (xn + yn));
  }

  Math::real EllipticFunction::RJ(real x, real y, real z, real p) {
    // Carlson, eqs 2.17 - 2.25
    static const real
      tolRD = pow(real(0.2) * (numeric_limits<real>::epsilon() * real(0.01)),
                  1/real(8));
    real
      A0 = (x + y + z + 2*p)/5,
      An = A0,
      delta = (p-x) * (p-y) * (p-z),
      Q = max(max(abs(A0-x), abs(A0-y)), max(abs(A0-z), abs(A0-p))) / tolRD,
      x0 = x,
      y0 = y,
      z0 = z,
      p0 = p,
      mul = 1,
      mul3 = 1,
      s = 0;
    while (Q >= mul * abs(An)) {
      // Max 7 trips
      real
        lam = sqrt(x0)*sqrt(y0) + sqrt(y0)*sqrt(z0) + sqrt(z0)*sqrt(x0),
        d0 = (sqrt(p0)+sqrt(x0)) * (sqrt(p0)+sqrt(y0)) * (sqrt(p0)+sqrt(z0)),
        e0 = delta/(mul3 * Math::sq(d0));
      s += RC(1, 1 + e0)/(mul * d0);
      An = (An + lam)/4;
      x0 = (x0 + lam)/4;
      y0 = (y0 + lam)/4;
      z0 = (z0 + lam)/4;
      p0 = (p0 + lam)/4;
      mul *= 4;
      mul3 *= 64;
    }
    real
      X = (A0 - x) / (mul * An),
      Y = (A0 - y) / (mul * An),
      Z = (A0 - z) / (mul * An),
      P = -(X + Y + Z) / 2,
      E2 = X*Y + X*Z + Y*Z - 3*P*P,
      E3 = X*Y*Z + 2*P * (E2 + 2*P*P),
      E4 = (2*X*Y*Z + P * (E2 + 3*P*P)) * P,
      E5 = X*Y*Z*P*P;
    // https://dlmf.nist.gov/19.36.E2
    // Polynomial is
    // (1 - 3*E2/14 + E3/6 + 9*E2^2/88 - 3*E4/22 - 9*E2*E3/52 + 3*E5/26
    //    - E2^3/16 + 3*E3^2/40 + 3*E2*E4/20 + 45*E2^2*E3/272
    //    - 9*(E3*E4+E2*E5)/68)
    return ((471240 - 540540 * E2) * E5 +
            (612612 * E2 - 540540 * E3 - 556920) * E4 +
            E3 * (306306 * E3 + E2 * (675675 * E2 - 706860) + 680680) +
            E2 * ((417690 - 255255 * E2) * E2 - 875160) + 4084080) /
      (4084080 * mul * An * sqrt(An)) + 6 * s;
  }

  Math::real EllipticFunction::RD(real x, real y, real z) {
    // Carlson, eqs 2.28 - 2.34
    static const real
      tolRD = pow(real(0.2) * (numeric_limits<real>::epsilon() * real(0.01)),
                  1/real(8));
    real
      A0 = (x + y + 3*z)/5,
      An = A0,
      Q = max(max(abs(A0-x), abs(A0-y)), abs(A0-z)) / tolRD,
      x0 = x,
      y0 = y,
      z0 = z,
      mul = 1,
      s = 0;
    while (Q >= mul * abs(An)) {
      // Max 7 trips
      real lam = sqrt(x0)*sqrt(y0) + sqrt(y0)*sqrt(z0) + sqrt(z0)*sqrt(x0);
      s += 1/(mul * sqrt(z0) * (z0 + lam));
      An = (An + lam)/4;
      x0 = (x0 + lam)/4;
      y0 = (y0 + lam)/4;
      z0 = (z0 + lam)/4;
      mul *= 4;
    }
    real
      X = (A0 - x) / (mul * An),
      Y = (A0 - y) / (mul * An),
      Z = -(X + Y) / 3,
      E2 = X*Y - 6*Z*Z,
      E3 = (3*X*Y - 8*Z*Z)*Z,
      E4 = 3 * (X*Y - Z*Z) * Z*Z,
      E5 = X*Y*Z*Z*Z;
    // https://dlmf.nist.gov/19.36.E2
    // Polynomial is
    // (1 - 3*E2/14 + E3/6 + 9*E2^2/88 - 3*E4/22 - 9*E2*E3/52 + 3*E5/26
    //    - E2^3/16 + 3*E3^2/40 + 3*E2*E4/20 + 45*E2^2*E3/272
    //    - 9*(E3*E4+E2*E5)/68)
    return ((471240 - 540540 * E2) * E5 +
            (612612 * E2 - 540540 * E3 - 556920) * E4 +
            E3 * (306306 * E3 + E2 * (675675 * E2 - 706860) + 680680) +
            E2 * ((417690 - 255255 * E2) * E2 - 875160) + 4084080) /
      (4084080 * mul * An * sqrt(An)) + 3 * s;
  }

  void EllipticFunction::Reset(real k2, real alpha2,
                               real kp2, real alphap2) {
    // Accept nans here (needed for GeodesicExact)
    if (k2 > 1)
      throw GeographicErr("Parameter k2 is not in (-inf, 1]");
    if (alpha2 > 1)
      throw GeographicErr("Parameter alpha2 is not in (-inf, 1]");
    if (kp2 < 0)
      throw GeographicErr("Parameter kp2 is not in [0, inf)");
    if (alphap2 < 0)
      throw GeographicErr("Parameter alphap2 is not in [0, inf)");
    _k2 = k2;
    _kp2 = kp2;
    _alpha2 = alpha2;
    _alphap2 = alphap2;
    _eps = _k2/Math::sq(sqrt(_kp2) + 1);
    // Values of complete elliptic integrals for k = 0,1 and alpha = 0,1
    //         K     E     D
    // k = 0:  pi/2  pi/2  pi/4
    // k = 1:  inf   1     inf
    //                    Pi    G     H
    // k = 0, alpha = 0:  pi/2  pi/2  pi/4
    // k = 1, alpha = 0:  inf   1     1
    // k = 0, alpha = 1:  inf   inf   pi/2
    // k = 1, alpha = 1:  inf   inf   inf
    //
    // Pi(0, k) = K(k)
    // G(0, k) = E(k)
    // H(0, k) = K(k) - D(k)
    // Pi(0, k) = K(k)
    // G(0, k) = E(k)
    // H(0, k) = K(k) - D(k)
    // Pi(alpha2, 0) = pi/(2*sqrt(1-alpha2))
    // G(alpha2, 0) = pi/(2*sqrt(1-alpha2))
    // H(alpha2, 0) = pi/(2*(1 + sqrt(1-alpha2)))
    // Pi(alpha2, 1) = inf
    // H(1, k) = K(k)
    // G(alpha2, 1) = H(alpha2, 1) = RC(1, alphap2)
    if (_k2 != 0) {
      // Complete elliptic integral K(k), Carlson eq. 4.1
      // https://dlmf.nist.gov/19.25.E1
      _Kc = _kp2 != 0 ? RF(_kp2, 1) : Math::infinity();
      // Complete elliptic integral E(k), Carlson eq. 4.2
      // https://dlmf.nist.gov/19.25.E1
      _Ec = _kp2 != 0 ? 2 * RG(_kp2, 1) : 1;
      // D(k) = (K(k) - E(k))/k^2, Carlson eq.4.3
      // https://dlmf.nist.gov/19.25.E1
      _Dc = _kp2 != 0 ? RD(0, _kp2, 1) / 3 : Math::infinity();
    } else {
      _Kc = _Ec = Math::pi()/2; _Dc = _Kc/2;
    }
    if (_alpha2 != 0) {
      // https://dlmf.nist.gov/19.25.E2
      real rj = (_kp2 != 0 && _alphap2 != 0) ? RJ(0, _kp2, 1, _alphap2) :
        Math::infinity(),
        // Only use rc if _kp2 = 0.
        rc = _kp2 != 0 ? 0 :
        (_alphap2 != 0 ? RC(1, _alphap2) : Math::infinity());
      // Pi(alpha^2, k)
      _Pic = _kp2 != 0 ? _Kc + _alpha2 * rj / 3 : Math::infinity();
      // G(alpha^2, k)
      _Gc = _kp2 != 0 ? _Kc + (_alpha2 - _k2) * rj / 3 :  rc;
      // H(alpha^2, k)
      _Hc = _kp2 != 0 ? _Kc - (_alphap2 != 0 ? _alphap2 * rj : 0) / 3 : rc;
    } else {
      _Pic = _Kc; _Gc = _Ec;
      // Hc = Kc - Dc but this involves large cancellations if k2 is close to
      // 1.  So write (for alpha2 = 0)
      //   Hc = int(cos(phi)^2/sqrt(1-k2*sin(phi)^2),phi,0,pi/2)
      //      = 1/sqrt(1-k2) * int(sin(phi)^2/sqrt(1-k2/kp2*sin(phi)^2,...)
      //      = 1/kp * D(i*k/kp)
      // and use D(k) = RD(0, kp2, 1) / 3
      // so Hc = 1/kp * RD(0, 1/kp2, 1) / 3
      //       = kp2 * RD(0, 1, kp2) / 3
      // using https://dlmf.nist.gov/19.20.E18
      // Equivalently
      //   RF(x, 1) - RD(0, x, 1)/3 = x * RD(0, 1, x)/3 for x > 0
      // For k2 = 1 and alpha2 = 0, we have
      //   Hc = int(cos(phi),...) = 1
      _Hc = _kp2 != 0 ? _kp2 * RD(0, 1, _kp2) / 3 : 1;
    }
  }

  /*
   * Implementation of methods given in
   *
   *   R. Bulirsch
   *   Numerical Calculation of Elliptic Integrals and Elliptic Functions
   *   Numericshe Mathematik 7, 78-90 (1965)
   */

  void EllipticFunction::sncndn(real x, real& sn, real& cn, real& dn) const {
    // Bulirsch's sncndn routine, p 89.
    static const real tolJAC =
      sqrt(numeric_limits<real>::epsilon() * real(0.01));
    if (_kp2 != 0) {
      real mc = _kp2, d = 0;
      if (_kp2 < 0) {
        d = 1 - mc;
        mc /= -d;
        d = sqrt(d);
        x *= d;
      }
      real c = 0;           // To suppress warning about uninitialized variable
      real m[num_], n[num_];
      unsigned l = 0;
      for (real a = 1; l < num_ || GEOGRAPHICLIB_PANIC; ++l) {
        // This converges quadratically.  Max 5 trips
        m[l] = a;
        n[l] = mc = sqrt(mc);
        c = (a + mc) / 2;
        if (!(abs(a - mc) > tolJAC * a)) {
          ++l;
          break;
        }
        mc *= a;
        a = c;
      }
      x *= c;
      sn = sin(x);
      cn = cos(x);
      dn = 1;
      if (sn != 0) {
        real a = cn / sn;
        c *= a;
        while (l--) {
          real b = m[l];
          a *= c;
          c *= dn;
          dn = (n[l] + a) / (b + a);
          a = c / b;
        }
        a = 1 / sqrt(c*c + 1);
        sn = sn < 0 ? -a : a;
        cn = c * sn;
        if (_kp2 < 0) {
          swap(cn, dn);
          sn /= d;
        }
      }
    } else {
      sn = tanh(x);
      dn = cn = 1 / cosh(x);
    }
  }

  Math::real EllipticFunction::F(real sn, real cn, real dn) const {
    // Carlson, eq. 4.5 and
    // https://dlmf.nist.gov/19.25.E5
    real cn2 = cn*cn, dn2 = dn*dn,
      fi = cn2 != 0 ? abs(sn) * RF(cn2, dn2, 1) : K();
    // Enforce usual trig-like symmetries
    if (cn < 0)
      fi = 2 * K() - fi;
    return Math::copysign(fi, sn);
  }

  Math::real EllipticFunction::E(real sn, real cn, real dn) const {
    real
      cn2 = cn*cn, dn2 = dn*dn, sn2 = sn*sn,
      ei = cn2 != 0 ?
      abs(sn) * ( _k2 <= 0 ?
                  // Carlson, eq. 4.6 and
                  // https://dlmf.nist.gov/19.25.E9
                  RF(cn2, dn2, 1) - _k2 * sn2 * RD(cn2, dn2, 1) / 3 :
                  ( _kp2 >= 0 ?
                    // https://dlmf.nist.gov/19.25.E10
                    _kp2 * RF(cn2, dn2, 1) +
                    _k2 * _kp2 * sn2 * RD(cn2, 1, dn2) / 3 +
                    _k2 * abs(cn) / dn :
                    // https://dlmf.nist.gov/19.25.E11
                    - _kp2 * sn2 * RD(dn2, 1, cn2) / 3 +
                    dn / abs(cn) ) ) :
      E();
    // Enforce usual trig-like symmetries
    if (cn < 0)
      ei = 2 * E() - ei;
    return Math::copysign(ei, sn);
  }

  Math::real EllipticFunction::D(real sn, real cn, real dn) const {
    // Carlson, eq. 4.8 and
    // https://dlmf.nist.gov/19.25.E13
    real
      cn2 = cn*cn, dn2 = dn*dn, sn2 = sn*sn,
      di = cn2 != 0 ? abs(sn) * sn2 * RD(cn2, dn2, 1) / 3 : D();
    // Enforce usual trig-like symmetries
    if (cn < 0)
      di = 2 * D() - di;
    return Math::copysign(di, sn);
  }

  Math::real EllipticFunction::Pi(real sn, real cn, real dn) const {
    // Carlson, eq. 4.7 and
    // https://dlmf.nist.gov/19.25.E14
    real
      cn2 = cn*cn, dn2 = dn*dn, sn2 = sn*sn,
      pii = cn2 != 0 ? abs(sn) * (RF(cn2, dn2, 1) +
                                  _alpha2 * sn2 *
                                  RJ(cn2, dn2, 1, cn2 + _alphap2 * sn2) / 3) :
      Pi();
    // Enforce usual trig-like symmetries
    if (cn < 0)
      pii = 2 * Pi() - pii;
    return Math::copysign(pii, sn);
  }

  Math::real EllipticFunction::G(real sn, real cn, real dn) const {
    real
      cn2 = cn*cn, dn2 = dn*dn, sn2 = sn*sn,
      gi = cn2 != 0 ? abs(sn) * (RF(cn2, dn2, 1) +
                                 (_alpha2 - _k2) * sn2 *
                                 RJ(cn2, dn2, 1, cn2 + _alphap2 * sn2) / 3) :
      G();
    // Enforce usual trig-like symmetries
    if (cn < 0)
      gi = 2 * G() - gi;
    return Math::copysign(gi, sn);
  }

  Math::real EllipticFunction::H(real sn, real cn, real dn) const {
    real
      cn2 = cn*cn, dn2 = dn*dn, sn2 = sn*sn,
      // WARNING: large cancellation if k2 = 1, alpha2 = 0, and phi near pi/2
      hi = cn2 != 0 ? abs(sn) * (RF(cn2, dn2, 1) -
                                 _alphap2 * sn2 *
                                 RJ(cn2, dn2, 1, cn2 + _alphap2 * sn2) / 3) :
      H();
    // Enforce usual trig-like symmetries
    if (cn < 0)
      hi = 2 * H() - hi;
    return Math::copysign(hi, sn);
  }

  Math::real EllipticFunction::deltaF(real sn, real cn, real dn) const {
    // Function is periodic with period pi
    if (cn < 0) { cn = -cn; sn = -sn; }
    return F(sn, cn, dn) * (Math::pi()/2) / K() - atan2(sn, cn);
  }

  Math::real EllipticFunction::deltaE(real sn, real cn, real dn) const {
    // Function is periodic with period pi
    if (cn < 0) { cn = -cn; sn = -sn; }
    return E(sn, cn, dn) * (Math::pi()/2) / E() - atan2(sn, cn);
  }

  Math::real EllipticFunction::deltaPi(real sn, real cn, real dn) const {
    // Function is periodic with period pi
    if (cn < 0) { cn = -cn; sn = -sn; }
    return Pi(sn, cn, dn) * (Math::pi()/2) / Pi() - atan2(sn, cn);
  }

  Math::real EllipticFunction::deltaD(real sn, real cn, real dn) const {
    // Function is periodic with period pi
    if (cn < 0) { cn = -cn; sn = -sn; }
    return D(sn, cn, dn) * (Math::pi()/2) / D() - atan2(sn, cn);
  }

  Math::real EllipticFunction::deltaG(real sn, real cn, real dn) const {
    // Function is periodic with period pi
    if (cn < 0) { cn = -cn; sn = -sn; }
    return G(sn, cn, dn) * (Math::pi()/2) / G() - atan2(sn, cn);
  }

  Math::real EllipticFunction::deltaH(real sn, real cn, real dn) const {
    // Function is periodic with period pi
    if (cn < 0) { cn = -cn; sn = -sn; }
    return H(sn, cn, dn) * (Math::pi()/2) / H() - atan2(sn, cn);
  }

  Math::real EllipticFunction::F(real phi) const {
    real sn = sin(phi), cn = cos(phi), dn = Delta(sn, cn);
    return abs(phi) < Math::pi() ? F(sn, cn, dn) :
      (deltaF(sn, cn, dn) + phi) * K() / (Math::pi()/2);
  }

  Math::real EllipticFunction::E(real phi) const {
    real sn = sin(phi), cn = cos(phi), dn = Delta(sn, cn);
    return abs(phi) < Math::pi() ? E(sn, cn, dn) :
      (deltaE(sn, cn, dn) + phi) * E() / (Math::pi()/2);
  }

  Math::real EllipticFunction::Ed(real ang) const {
    real n = ceil(ang/360 - real(0.5));
    ang -= 360 * n;
    real sn, cn;
    Math::sincosd(ang, sn, cn);
    return E(sn, cn, Delta(sn, cn)) + 4 * E() * n;
  }

  Math::real EllipticFunction::Pi(real phi) const {
    real sn = sin(phi), cn = cos(phi), dn = Delta(sn, cn);
    return abs(phi) < Math::pi() ? Pi(sn, cn, dn) :
      (deltaPi(sn, cn, dn) + phi) * Pi() / (Math::pi()/2);
  }

  Math::real EllipticFunction::D(real phi) const {
    real sn = sin(phi), cn = cos(phi), dn = Delta(sn, cn);
    return abs(phi) < Math::pi() ? D(sn, cn, dn) :
      (deltaD(sn, cn, dn) + phi) * D() / (Math::pi()/2);
  }

  Math::real EllipticFunction::G(real phi) const {
    real sn = sin(phi), cn = cos(phi), dn = Delta(sn, cn);
    return abs(phi) < Math::pi() ? G(sn, cn, dn) :
      (deltaG(sn, cn, dn) + phi) * G() / (Math::pi()/2);
  }

  Math::real EllipticFunction::H(real phi) const {
    real sn = sin(phi), cn = cos(phi), dn = Delta(sn, cn);
    return abs(phi) < Math::pi() ? H(sn, cn, dn) :
      (deltaH(sn, cn, dn) + phi) * H() / (Math::pi()/2);
  }

  Math::real EllipticFunction::Einv(real x) const {
    static const real tolJAC =
      sqrt(numeric_limits<real>::epsilon() * real(0.01));
    real n = floor(x / (2 * _Ec) + real(0.5));
    x -= 2 * _Ec * n;           // x now in [-ec, ec)
    // Linear approximation
    real phi = Math::pi() * x / (2 * _Ec); // phi in [-pi/2, pi/2)
    // First order correction
    phi -= _eps * sin(2 * phi) / 2;
    // For kp2 close to zero use asin(x/_Ec) or
    // J. P. Boyd, Applied Math. and Computation 218, 7005-7013 (2012)
    // https://doi.org/10.1016/j.amc.2011.12.021
    for (int i = 0; i < num_ || GEOGRAPHICLIB_PANIC; ++i) {
      real
        sn = sin(phi),
        cn = cos(phi),
        dn = Delta(sn, cn),
        err = (E(sn, cn, dn) - x)/dn;
      phi -= err;
      if (abs(err) < tolJAC)
        break;
    }
    return n * Math::pi() + phi;
  }

  Math::real EllipticFunction::deltaEinv(real stau, real ctau) const {
    // Function is periodic with period pi
    if (ctau < 0) { ctau = -ctau; stau = -stau; }
    real tau = atan2(stau, ctau);
    return Einv( tau * E() / (Math::pi()/2) ) - tau;
  }

} // namespace GeographicLib