geodesic.c 74.5 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
/**
 * \file geodesic.c
 * \brief Implementation of the geodesic routines in C
 *
 * For the full documentation see geodesic.h.
 **********************************************************************/

/** @cond SKIP */

/*
 * This is a C implementation of the geodesic algorithms described in
 *
 *   C. F. F. Karney,
 *   Algorithms for geodesics,
 *   J. Geodesy <b>87</b>, 43--55 (2013);
 *   https://doi.org/10.1007/s00190-012-0578-z
 *   Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
 *
 * See the comments in geodesic.h for documentation.
 *
 * Copyright (c) Charles Karney (2012-2019) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 */

#include "geodesic.h"
#include <math.h>
#include <limits.h>
#include <float.h>

#if !defined(HAVE_C99_MATH)
#if defined(PROJ_LIB)
/* PROJ requires C99 so HAVE_C99_MATH is implicit */
#define HAVE_C99_MATH 1
#else
#define HAVE_C99_MATH 0
#endif
#endif

#if !defined(__cplusplus)
#define nullptr 0
#endif

#define GEOGRAPHICLIB_GEODESIC_ORDER 6
#define nA1   GEOGRAPHICLIB_GEODESIC_ORDER
#define nC1   GEOGRAPHICLIB_GEODESIC_ORDER
#define nC1p  GEOGRAPHICLIB_GEODESIC_ORDER
#define nA2   GEOGRAPHICLIB_GEODESIC_ORDER
#define nC2   GEOGRAPHICLIB_GEODESIC_ORDER
#define nA3   GEOGRAPHICLIB_GEODESIC_ORDER
#define nA3x  nA3
#define nC3   GEOGRAPHICLIB_GEODESIC_ORDER
#define nC3x  ((nC3 * (nC3 - 1)) / 2)
#define nC4   GEOGRAPHICLIB_GEODESIC_ORDER
#define nC4x  ((nC4 * (nC4 + 1)) / 2)
#define nC    (GEOGRAPHICLIB_GEODESIC_ORDER + 1)

typedef double real;
typedef int boolx;

static unsigned init = 0;
static const int FALSE = 0;
static const int TRUE = 1;
static unsigned digits, maxit1, maxit2;
static real epsilon, realmin, pi, degree, NaN,
  tiny, tol0, tol1, tol2, tolb, xthresh;

static void Init() {
  if (!init) {
    digits = DBL_MANT_DIG;
    epsilon = DBL_EPSILON;
    realmin = DBL_MIN;
#if defined(M_PI)
    pi = M_PI;
#else
    pi = atan2(0.0, -1.0);
#endif
    maxit1 = 20;
    maxit2 = maxit1 + digits + 10;
    tiny = sqrt(realmin);
    tol0 = epsilon;
    /* Increase multiplier in defn of tol1 from 100 to 200 to fix inverse case
     * 52.784459512564 0 -52.784459512563990912 179.634407464943777557
     * which otherwise failed for Visual Studio 10 (Release and Debug) */
    tol1 = 200 * tol0;
    tol2 = sqrt(tol0);
    /* Check on bisection interval */
    tolb = tol0 * tol2;
    xthresh = 1000 * tol2;
    degree = pi/180;
#if defined(NAN)
    NaN = NAN;                  /* NAN is defined in C99 */
#else
    {
      real minus1 = -1;
      /* cppcheck-suppress wrongmathcall */
      NaN = sqrt(minus1);
    }
#endif
    init = 1;
  }
}

enum captype {
  CAP_NONE = 0U,
  CAP_C1   = 1U<<0,
  CAP_C1p  = 1U<<1,
  CAP_C2   = 1U<<2,
  CAP_C3   = 1U<<3,
  CAP_C4   = 1U<<4,
  CAP_ALL  = 0x1FU,
  OUT_ALL  = 0x7F80U
};

#if HAVE_C99_MATH
#define hypotx hypot
/* no need to redirect log1px, since it's only used by atanhx */
#define atanhx atanh
#define copysignx copysign
#define cbrtx cbrt
#define remainderx remainder
#define remquox remquo
#else
/* Replacements for C99 math functions */

static real hypotx(real x, real y) {
  x = fabs(x); y = fabs(y);
  if (x < y) {
    x /= y;                     /* y is nonzero */
    return y * sqrt(1 + x * x);
  } else {
    y /= (x != 0 ? x : 1);
    return x * sqrt(1 + y * y);
  }
}

static real log1px(real x) {
  volatile real
    y = 1 + x,
    z = y - 1;
  /* Here's the explanation for this magic: y = 1 + z, exactly, and z
   * approx x, thus log(y)/z (which is nearly constant near z = 0) returns
   * a good approximation to the true log(1 + x)/x.  The multiplication x *
   * (log(y)/z) introduces little additional error. */
  return z == 0 ? x : x * log(y) / z;
}

static real atanhx(real x) {
  real y = fabs(x);             /* Enforce odd parity */
  y = log1px(2 * y/(1 - y))/2;
  return x > 0 ? y : (x < 0 ? -y : x); /* atanh(-0.0) = -0.0 */
}

static real copysignx(real x, real y) {
  /* 1/y trick to get the sign of -0.0 */
  return fabs(x) * (y < 0 || (y == 0 && 1/y < 0) ? -1 : 1);
}

static real cbrtx(real x) {
  real y = pow(fabs(x), 1/(real)(3));  /* Return the real cube root */
  return x > 0 ? y : (x < 0 ? -y : x); /* cbrt(-0.0) = -0.0 */
}

static real remainderx(real x, real y) {
  real z;
  y = fabs(y);                 /* The result doesn't depend on the sign of y */
  z = fmod(x, y);
  if (z == 0)
    /* This shouldn't be necessary.  However, before version 14 (2015),
     * Visual Studio had problems dealing with -0.0.  Specifically
     *   VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0
     * python 2.7 on Windows 32-bit machines has the same problem. */
    z = copysignx(z, x);
  else if (2 * fabs(z) == y)
    z -= fmod(x, 2 * y) - z;    /* Implement ties to even */
  else if (2 * fabs(z) > y)
    z += (z < 0 ? y : -y);      /* Fold remaining cases to (-y/2, y/2) */
  return z;
}

static real remquox(real x, real y, int* n) {
  real z = remainderx(x, y);
  if (n) {
    real
      a = remainderx(x, 2 * y),
      b = remainderx(x, 4 * y),
      c = remainderx(x, 8 * y);
    *n  = (a > z ? 1 : (a < z ? -1 : 0));
    *n += (b > a ? 2 : (b < a ? -2 : 0));
    *n += (c > b ? 4 : (c < b ? -4 : 0));
    if (y < 0) *n *= -1;
    if (y != 0) {
      if (x/y > 0 && *n <= 0)
        *n += 8;
      else if (x/y < 0 && *n >= 0)
        *n -= 8;
    }
  }
  return z;
}

#endif

static real sq(real x) { return x * x; }

static real sumx(real u, real v, real* t) {
  volatile real s = u + v;
  volatile real up = s - v;
  volatile real vpp = s - up;
  up -= u;
  vpp -= v;
  if (t) *t = -(up + vpp);
  /* error-free sum:
   * u + v =       s      + t
   *       = round(u + v) + t */
  return s;
}

static real polyval(int N, const real p[], real x) {
  real y = N < 0 ? 0 : *p++;
  while (--N >= 0) y = y * x + *p++;
  return y;
}

/* mimic C++ std::min and std::max */
static real minx(real a, real b)
{ return (b < a) ? b : a; }

static real maxx(real a, real b)
{ return (a < b) ? b : a; }

static void swapx(real* x, real* y)
{ real t = *x; *x = *y; *y = t; }

static void norm2(real* sinx, real* cosx) {
  real r = hypotx(*sinx, *cosx);
  *sinx /= r;
  *cosx /= r;
}

static real AngNormalize(real x) {
  x = remainderx(x, (real)(360));
  return x != -180 ? x : 180;
}

static real LatFix(real x)
{ return fabs(x) > 90 ? NaN : x; }

static real AngDiff(real x, real y, real* e) {
  real t, d = AngNormalize(sumx(AngNormalize(-x), AngNormalize(y), &t));
  /* Here y - x = d + t (mod 360), exactly, where d is in (-180,180] and
   * abs(t) <= eps (eps = 2^-45 for doubles).  The only case where the
   * addition of t takes the result outside the range (-180,180] is d = 180
   * and t > 0.  The case, d = -180 + eps, t = -eps, can't happen, since
   * sum would have returned the exact result in such a case (i.e., given t
   * = 0). */
  return sumx(d == 180 && t > 0 ? -180 : d, t, e);
}

static real AngRound(real x) {
  const real z = 1/(real)(16);
  volatile real y;
  if (x == 0) return 0;
  y = fabs(x);
  /* The compiler mustn't "simplify" z - (z - y) to y */
  y = y < z ? z - (z - y) : y;
  return x < 0 ? -y : y;
}

static void sincosdx(real x, real* sinx, real* cosx) {
  /* In order to minimize round-off errors, this function exactly reduces
   * the argument to the range [-45, 45] before converting it to radians. */
  real r, s, c; int q;
  r = remquox(x, (real)(90), &q);
  /* now abs(r) <= 45 */
  r *= degree;
  /* Possibly could call the gnu extension sincos */
  s = sin(r); c = cos(r);
#if defined(_MSC_VER) && _MSC_VER < 1900
  /*
   * Before version 14 (2015), Visual Studio had problems dealing
   * with -0.0.  Specifically
   *   VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0
   *   VC 12       and 64-bit compile:  sin(-0.0)        -> +0.0
   * AngNormalize has a similar fix.
   * python 2.7 on Windows 32-bit machines has the same problem.
   */
  if (x == 0) s = x;
#endif
  switch ((unsigned)q & 3U) {
  case 0U: *sinx =  s; *cosx =  c; break;
  case 1U: *sinx =  c; *cosx = -s; break;
  case 2U: *sinx = -s; *cosx = -c; break;
  default: *sinx = -c; *cosx =  s; break; /* case 3U */
  }
  if (x != 0) { *sinx += (real)(0); *cosx += (real)(0); }
}

static real atan2dx(real y, real x) {
  /* In order to minimize round-off errors, this function rearranges the
   * arguments so that result of atan2 is in the range [-pi/4, pi/4] before
   * converting it to degrees and mapping the result to the correct
   * quadrant. */
  int q = 0; real ang;
  if (fabs(y) > fabs(x)) { swapx(&x, &y); q = 2; }
  if (x < 0) { x = -x; ++q; }
  /* here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4] */
  ang = atan2(y, x) / degree;
  switch (q) {
    /* Note that atan2d(-0.0, 1.0) will return -0.  However, we expect that
     * atan2d will not be called with y = -0.  If need be, include
     *
     *   case 0: ang = 0 + ang; break;
     */
  case 1: ang = (y >= 0 ? 180 : -180) - ang; break;
  case 2: ang =  90 - ang; break;
  case 3: ang = -90 + ang; break;
  }
  return ang;
}

static void A3coeff(struct geod_geodesic* g);
static void C3coeff(struct geod_geodesic* g);
static void C4coeff(struct geod_geodesic* g);
static real SinCosSeries(boolx sinp,
                         real sinx, real cosx,
                         const real c[], int n);
static void Lengths(const struct geod_geodesic* g,
                    real eps, real sig12,
                    real ssig1, real csig1, real dn1,
                    real ssig2, real csig2, real dn2,
                    real cbet1, real cbet2,
                    real* ps12b, real* pm12b, real* pm0,
                    real* pM12, real* pM21,
                    /* Scratch area of the right size */
                    real Ca[]);
static real Astroid(real x, real y);
static real InverseStart(const struct geod_geodesic* g,
                         real sbet1, real cbet1, real dn1,
                         real sbet2, real cbet2, real dn2,
                         real lam12, real slam12, real clam12,
                         real* psalp1, real* pcalp1,
                         /* Only updated if return val >= 0 */
                         real* psalp2, real* pcalp2,
                         /* Only updated for short lines */
                         real* pdnm,
                         /* Scratch area of the right size */
                         real Ca[]);
static real Lambda12(const struct geod_geodesic* g,
                     real sbet1, real cbet1, real dn1,
                     real sbet2, real cbet2, real dn2,
                     real salp1, real calp1,
                     real slam120, real clam120,
                     real* psalp2, real* pcalp2,
                     real* psig12,
                     real* pssig1, real* pcsig1,
                     real* pssig2, real* pcsig2,
                     real* peps,
                     real* pdomg12,
                     boolx diffp, real* pdlam12,
                     /* Scratch area of the right size */
                     real Ca[]);
static real A3f(const struct geod_geodesic* g, real eps);
static void C3f(const struct geod_geodesic* g, real eps, real c[]);
static void C4f(const struct geod_geodesic* g, real eps, real c[]);
static real A1m1f(real eps);
static void C1f(real eps, real c[]);
static void C1pf(real eps, real c[]);
static real A2m1f(real eps);
static void C2f(real eps, real c[]);
static int transit(real lon1, real lon2);
static int transitdirect(real lon1, real lon2);
static void accini(real s[]);
static void acccopy(const real s[], real t[]);
static void accadd(real s[], real y);
static real accsum(const real s[], real y);
static void accneg(real s[]);
static void accrem(real s[], real y);
static real areareduceA(real area[], real area0,
                        int crossings, boolx reverse, boolx sign);
static real areareduceB(real area, real area0,
                        int crossings, boolx reverse, boolx sign);

void geod_init(struct geod_geodesic* g, real a, real f) {
  if (!init) Init();
  g->a = a;
  g->f = f;
  g->f1 = 1 - g->f;
  g->e2 = g->f * (2 - g->f);
  g->ep2 = g->e2 / sq(g->f1);   /* e2 / (1 - e2) */
  g->n = g->f / ( 2 - g->f);
  g->b = g->a * g->f1;
  g->c2 = (sq(g->a) + sq(g->b) *
           (g->e2 == 0 ? 1 :
            (g->e2 > 0 ? atanhx(sqrt(g->e2)) : atan(sqrt(-g->e2))) /
            sqrt(fabs(g->e2))))/2; /* authalic radius squared */
  /* The sig12 threshold for "really short".  Using the auxiliary sphere
   * solution with dnm computed at (bet1 + bet2) / 2, the relative error in the
   * azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.  (Error
   * measured for 1/100 < b/a < 100 and abs(f) >= 1/1000.  For a given f and
   * sig12, the max error occurs for lines near the pole.  If the old rule for
   * computing dnm = (dn1 + dn2)/2 is used, then the error increases by a
   * factor of 2.)  Setting this equal to epsilon gives sig12 = etol2.  Here
   * 0.1 is a safety factor (error decreased by 100) and max(0.001, abs(f))
   * stops etol2 getting too large in the nearly spherical case. */
  g->etol2 = 0.1 * tol2 /
    sqrt( maxx((real)(0.001), fabs(g->f)) * minx((real)(1), 1 - g->f/2) / 2 );

  A3coeff(g);
  C3coeff(g);
  C4coeff(g);
}

static void geod_lineinit_int(struct geod_geodesicline* l,
                              const struct geod_geodesic* g,
                              real lat1, real lon1,
                              real azi1, real salp1, real calp1,
                              unsigned caps) {
  real cbet1, sbet1, eps;
  l->a = g->a;
  l->f = g->f;
  l->b = g->b;
  l->c2 = g->c2;
  l->f1 = g->f1;
  /* If caps is 0 assume the standard direct calculation */
  l->caps = (caps ? caps : GEOD_DISTANCE_IN | GEOD_LONGITUDE) |
    /* always allow latitude and azimuth and unrolling of longitude */
    GEOD_LATITUDE | GEOD_AZIMUTH | GEOD_LONG_UNROLL;

  l->lat1 = LatFix(lat1);
  l->lon1 = lon1;
  l->azi1 = azi1;
  l->salp1 = salp1;
  l->calp1 = calp1;

  sincosdx(AngRound(l->lat1), &sbet1, &cbet1); sbet1 *= l->f1;
  /* Ensure cbet1 = +epsilon at poles */
  norm2(&sbet1, &cbet1); cbet1 = maxx(tiny, cbet1);
  l->dn1 = sqrt(1 + g->ep2 * sq(sbet1));

  /* Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0), */
  l->salp0 = l->salp1 * cbet1; /* alp0 in [0, pi/2 - |bet1|] */
  /* Alt: calp0 = hypot(sbet1, calp1 * cbet1).  The following
   * is slightly better (consider the case salp1 = 0). */
  l->calp0 = hypotx(l->calp1, l->salp1 * sbet1);
  /* Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
   * sig = 0 is nearest northward crossing of equator.
   * With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
   * With bet1 =  pi/2, alp1 = -pi, sig1 =  pi/2
   * With bet1 = -pi/2, alp1 =  0 , sig1 = -pi/2
   * Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
   * With alp0 in (0, pi/2], quadrants for sig and omg coincide.
   * No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
   * With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi. */
  l->ssig1 = sbet1; l->somg1 = l->salp0 * sbet1;
  l->csig1 = l->comg1 = sbet1 != 0 || l->calp1 != 0 ? cbet1 * l->calp1 : 1;
  norm2(&l->ssig1, &l->csig1); /* sig1 in (-pi, pi] */
  /* norm2(somg1, comg1); -- don't need to normalize! */

  l->k2 = sq(l->calp0) * g->ep2;
  eps = l->k2 / (2 * (1 + sqrt(1 + l->k2)) + l->k2);

  if (l->caps & CAP_C1) {
    real s, c;
    l->A1m1 = A1m1f(eps);
    C1f(eps, l->C1a);
    l->B11 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C1a, nC1);
    s = sin(l->B11); c = cos(l->B11);
    /* tau1 = sig1 + B11 */
    l->stau1 = l->ssig1 * c + l->csig1 * s;
    l->ctau1 = l->csig1 * c - l->ssig1 * s;
    /* Not necessary because C1pa reverts C1a
     *    B11 = -SinCosSeries(TRUE, stau1, ctau1, C1pa, nC1p); */
  }

  if (l->caps & CAP_C1p)
    C1pf(eps, l->C1pa);

  if (l->caps & CAP_C2) {
    l->A2m1 = A2m1f(eps);
    C2f(eps, l->C2a);
    l->B21 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C2a, nC2);
  }

  if (l->caps & CAP_C3) {
    C3f(g, eps, l->C3a);
    l->A3c = -l->f * l->salp0 * A3f(g, eps);
    l->B31 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C3a, nC3-1);
  }

  if (l->caps & CAP_C4) {
    C4f(g, eps, l->C4a);
    /* Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0) */
    l->A4 = sq(l->a) * l->calp0 * l->salp0 * g->e2;
    l->B41 = SinCosSeries(FALSE, l->ssig1, l->csig1, l->C4a, nC4);
  }

  l->a13 = l->s13 = NaN;
}

void geod_lineinit(struct geod_geodesicline* l,
                   const struct geod_geodesic* g,
                   real lat1, real lon1, real azi1, unsigned caps) {
  real salp1, calp1;
  azi1 = AngNormalize(azi1);
  /* Guard against underflow in salp0 */
  sincosdx(AngRound(azi1), &salp1, &calp1);
  geod_lineinit_int(l, g, lat1, lon1, azi1, salp1, calp1, caps);
}

void geod_gendirectline(struct geod_geodesicline* l,
                        const struct geod_geodesic* g,
                        real lat1, real lon1, real azi1,
                        unsigned flags, real s12_a12,
                        unsigned caps) {
  geod_lineinit(l, g, lat1, lon1, azi1, caps);
  geod_gensetdistance(l, flags, s12_a12);
}

void geod_directline(struct geod_geodesicline* l,
                        const struct geod_geodesic* g,
                        real lat1, real lon1, real azi1,
                        real s12, unsigned caps) {
  geod_gendirectline(l, g, lat1, lon1, azi1, GEOD_NOFLAGS, s12, caps);
}

real geod_genposition(const struct geod_geodesicline* l,
                      unsigned flags, real s12_a12,
                      real* plat2, real* plon2, real* pazi2,
                      real* ps12, real* pm12,
                      real* pM12, real* pM21,
                      real* pS12) {
  real lat2 = 0, lon2 = 0, azi2 = 0, s12 = 0,
    m12 = 0, M12 = 0, M21 = 0, S12 = 0;
  /* Avoid warning about uninitialized B12. */
  real sig12, ssig12, csig12, B12 = 0, AB1 = 0;
  real omg12, lam12, lon12;
  real ssig2, csig2, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2;
  unsigned outmask =
    (plat2 ? GEOD_LATITUDE : GEOD_NONE) |
    (plon2 ? GEOD_LONGITUDE : GEOD_NONE) |
    (pazi2 ? GEOD_AZIMUTH : GEOD_NONE) |
    (ps12 ? GEOD_DISTANCE : GEOD_NONE) |
    (pm12 ? GEOD_REDUCEDLENGTH : GEOD_NONE) |
    (pM12 || pM21 ? GEOD_GEODESICSCALE : GEOD_NONE) |
    (pS12 ? GEOD_AREA : GEOD_NONE);

  outmask &= l->caps & OUT_ALL;
  if (!( TRUE /*Init()*/ &&
         (flags & GEOD_ARCMODE || (l->caps & (GEOD_DISTANCE_IN & OUT_ALL))) ))
    /* Uninitialized or impossible distance calculation requested */
    return NaN;

  if (flags & GEOD_ARCMODE) {
    /* Interpret s12_a12 as spherical arc length */
    sig12 = s12_a12 * degree;
    sincosdx(s12_a12, &ssig12, &csig12);
  } else {
    /* Interpret s12_a12 as distance */
    real
      tau12 = s12_a12 / (l->b * (1 + l->A1m1)),
      s = sin(tau12),
      c = cos(tau12);
    /* tau2 = tau1 + tau12 */
    B12 = - SinCosSeries(TRUE,
                         l->stau1 * c + l->ctau1 * s,
                         l->ctau1 * c - l->stau1 * s,
                         l->C1pa, nC1p);
    sig12 = tau12 - (B12 - l->B11);
    ssig12 = sin(sig12); csig12 = cos(sig12);
    if (fabs(l->f) > 0.01) {
      /* Reverted distance series is inaccurate for |f| > 1/100, so correct
       * sig12 with 1 Newton iteration.  The following table shows the
       * approximate maximum error for a = WGS_a() and various f relative to
       * GeodesicExact.
       *     erri = the error in the inverse solution (nm)
       *     errd = the error in the direct solution (series only) (nm)
       *     errda = the error in the direct solution (series + 1 Newton) (nm)
       *
       *       f     erri  errd errda
       *     -1/5    12e6 1.2e9  69e6
       *     -1/10  123e3  12e6 765e3
       *     -1/20   1110 108e3  7155
       *     -1/50  18.63 200.9 27.12
       *     -1/100 18.63 23.78 23.37
       *     -1/150 18.63 21.05 20.26
       *      1/150 22.35 24.73 25.83
       *      1/100 22.35 25.03 25.31
       *      1/50  29.80 231.9 30.44
       *      1/20   5376 146e3  10e3
       *      1/10  829e3  22e6 1.5e6
       *      1/5   157e6 3.8e9 280e6 */
      real serr;
      ssig2 = l->ssig1 * csig12 + l->csig1 * ssig12;
      csig2 = l->csig1 * csig12 - l->ssig1 * ssig12;
      B12 = SinCosSeries(TRUE, ssig2, csig2, l->C1a, nC1);
      serr = (1 + l->A1m1) * (sig12 + (B12 - l->B11)) - s12_a12 / l->b;
      sig12 = sig12 - serr / sqrt(1 + l->k2 * sq(ssig2));
      ssig12 = sin(sig12); csig12 = cos(sig12);
      /* Update B12 below */
    }
  }

  /* sig2 = sig1 + sig12 */
  ssig2 = l->ssig1 * csig12 + l->csig1 * ssig12;
  csig2 = l->csig1 * csig12 - l->ssig1 * ssig12;
  dn2 = sqrt(1 + l->k2 * sq(ssig2));
  if (outmask & (GEOD_DISTANCE | GEOD_REDUCEDLENGTH | GEOD_GEODESICSCALE)) {
    if (flags & GEOD_ARCMODE || fabs(l->f) > 0.01)
      B12 = SinCosSeries(TRUE, ssig2, csig2, l->C1a, nC1);
    AB1 = (1 + l->A1m1) * (B12 - l->B11);
  }
  /* sin(bet2) = cos(alp0) * sin(sig2) */
  sbet2 = l->calp0 * ssig2;
  /* Alt: cbet2 = hypot(csig2, salp0 * ssig2); */
  cbet2 = hypotx(l->salp0, l->calp0 * csig2);
  if (cbet2 == 0)
    /* I.e., salp0 = 0, csig2 = 0.  Break the degeneracy in this case */
    cbet2 = csig2 = tiny;
  /* tan(alp0) = cos(sig2)*tan(alp2) */
  salp2 = l->salp0; calp2 = l->calp0 * csig2; /* No need to normalize */

  if (outmask & GEOD_DISTANCE)
    s12 = (flags & GEOD_ARCMODE) ?
      l->b * ((1 + l->A1m1) * sig12 + AB1) :
      s12_a12;

  if (outmask & GEOD_LONGITUDE) {
    real E = copysignx(1, l->salp0); /* east or west going? */
    /* tan(omg2) = sin(alp0) * tan(sig2) */
    somg2 = l->salp0 * ssig2; comg2 = csig2;  /* No need to normalize */
    /* omg12 = omg2 - omg1 */
    omg12 = (flags & GEOD_LONG_UNROLL)
      ? E * (sig12
             - (atan2(    ssig2, csig2) - atan2(    l->ssig1, l->csig1))
             + (atan2(E * somg2, comg2) - atan2(E * l->somg1, l->comg1)))
      : atan2(somg2 * l->comg1 - comg2 * l->somg1,
              comg2 * l->comg1 + somg2 * l->somg1);
    lam12 = omg12 + l->A3c *
      ( sig12 + (SinCosSeries(TRUE, ssig2, csig2, l->C3a, nC3-1)
                 - l->B31));
    lon12 = lam12 / degree;
    lon2 = (flags & GEOD_LONG_UNROLL) ? l->lon1 + lon12 :
      AngNormalize(AngNormalize(l->lon1) + AngNormalize(lon12));
  }

  if (outmask & GEOD_LATITUDE)
    lat2 = atan2dx(sbet2, l->f1 * cbet2);

  if (outmask & GEOD_AZIMUTH)
    azi2 = atan2dx(salp2, calp2);

  if (outmask & (GEOD_REDUCEDLENGTH | GEOD_GEODESICSCALE)) {
    real
      B22 = SinCosSeries(TRUE, ssig2, csig2, l->C2a, nC2),
      AB2 = (1 + l->A2m1) * (B22 - l->B21),
      J12 = (l->A1m1 - l->A2m1) * sig12 + (AB1 - AB2);
    if (outmask & GEOD_REDUCEDLENGTH)
      /* Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
       * accurate cancellation in the case of coincident points. */
      m12 = l->b * ((dn2 * (l->csig1 * ssig2) - l->dn1 * (l->ssig1 * csig2))
                    - l->csig1 * csig2 * J12);
    if (outmask & GEOD_GEODESICSCALE) {
      real t = l->k2 * (ssig2 - l->ssig1) * (ssig2 + l->ssig1) /
        (l->dn1 + dn2);
      M12 = csig12 + (t *  ssig2 -  csig2 * J12) * l->ssig1 / l->dn1;
      M21 = csig12 - (t * l->ssig1 - l->csig1 * J12) *  ssig2 /  dn2;
    }
  }

  if (outmask & GEOD_AREA) {
    real
      B42 = SinCosSeries(FALSE, ssig2, csig2, l->C4a, nC4);
    real salp12, calp12;
    if (l->calp0 == 0 || l->salp0 == 0) {
      /* alp12 = alp2 - alp1, used in atan2 so no need to normalize */
      salp12 = salp2 * l->calp1 - calp2 * l->salp1;
      calp12 = calp2 * l->calp1 + salp2 * l->salp1;
    } else {
      /* tan(alp) = tan(alp0) * sec(sig)
       * tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
       * = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
       * If csig12 > 0, write
       *   csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
       * else
       *   csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
       * No need to normalize */
      salp12 = l->calp0 * l->salp0 *
        (csig12 <= 0 ? l->csig1 * (1 - csig12) + ssig12 * l->ssig1 :
         ssig12 * (l->csig1 * ssig12 / (1 + csig12) + l->ssig1));
      calp12 = sq(l->salp0) + sq(l->calp0) * l->csig1 * csig2;
    }
    S12 = l->c2 * atan2(salp12, calp12) + l->A4 * (B42 - l->B41);
  }

  /* In the pattern
   *
   *   if ((outmask & GEOD_XX) && pYY)
   *     *pYY = YY;
   *
   * the second check "&& pYY" is redundant.  It's there to make the CLang
   * static analyzer happy.
   */
  if ((outmask & GEOD_LATITUDE) && plat2)
    *plat2 = lat2;
  if ((outmask & GEOD_LONGITUDE) && plon2)
    *plon2 = lon2;
  if ((outmask & GEOD_AZIMUTH) && pazi2)
    *pazi2 = azi2;
  if ((outmask & GEOD_DISTANCE) && ps12)
    *ps12 = s12;
  if ((outmask & GEOD_REDUCEDLENGTH) && pm12)
    *pm12 = m12;
  if (outmask & GEOD_GEODESICSCALE) {
    if (pM12) *pM12 = M12;
    if (pM21) *pM21 = M21;
  }
  if ((outmask & GEOD_AREA) && pS12)
    *pS12 = S12;

  return (flags & GEOD_ARCMODE) ? s12_a12 : sig12 / degree;
}

void geod_setdistance(struct geod_geodesicline* l, real s13) {
  l->s13 = s13;
  l->a13 = geod_genposition(l, GEOD_NOFLAGS, l->s13, nullptr, nullptr, nullptr,
                            nullptr, nullptr, nullptr, nullptr, nullptr);
}

static void geod_setarc(struct geod_geodesicline* l, real a13) {
  l->a13 = a13; l->s13 = NaN;
  geod_genposition(l, GEOD_ARCMODE, l->a13, nullptr, nullptr, nullptr, &l->s13,
                   nullptr, nullptr, nullptr, nullptr);
}

void geod_gensetdistance(struct geod_geodesicline* l,
 unsigned flags, real s13_a13) {
  (flags & GEOD_ARCMODE) ?
    geod_setarc(l, s13_a13) :
    geod_setdistance(l, s13_a13);
}

void geod_position(const struct geod_geodesicline* l, real s12,
                   real* plat2, real* plon2, real* pazi2) {
  geod_genposition(l, FALSE, s12, plat2, plon2, pazi2,
                   nullptr, nullptr, nullptr, nullptr, nullptr);
}

real geod_gendirect(const struct geod_geodesic* g,
                    real lat1, real lon1, real azi1,
                    unsigned flags, real s12_a12,
                    real* plat2, real* plon2, real* pazi2,
                    real* ps12, real* pm12, real* pM12, real* pM21,
                    real* pS12) {
  struct geod_geodesicline l;
  unsigned outmask =
    (plat2 ? GEOD_LATITUDE : GEOD_NONE) |
    (plon2 ? GEOD_LONGITUDE : GEOD_NONE) |
    (pazi2 ? GEOD_AZIMUTH : GEOD_NONE) |
    (ps12 ? GEOD_DISTANCE : GEOD_NONE) |
    (pm12 ? GEOD_REDUCEDLENGTH : GEOD_NONE) |
    (pM12 || pM21 ? GEOD_GEODESICSCALE : GEOD_NONE) |
    (pS12 ? GEOD_AREA : GEOD_NONE);

  geod_lineinit(&l, g, lat1, lon1, azi1,
                /* Automatically supply GEOD_DISTANCE_IN if necessary */
                outmask |
                ((flags & GEOD_ARCMODE) ? GEOD_NONE : GEOD_DISTANCE_IN));
  return geod_genposition(&l, flags, s12_a12,
                          plat2, plon2, pazi2, ps12, pm12, pM12, pM21, pS12);
}

void geod_direct(const struct geod_geodesic* g,
                 real lat1, real lon1, real azi1,
                 real s12,
                 real* plat2, real* plon2, real* pazi2) {
  geod_gendirect(g, lat1, lon1, azi1, GEOD_NOFLAGS, s12, plat2, plon2, pazi2,
                 nullptr, nullptr, nullptr, nullptr, nullptr);
}

static real geod_geninverse_int(const struct geod_geodesic* g,
                                real lat1, real lon1, real lat2, real lon2,
                                real* ps12,
                                real* psalp1, real* pcalp1,
                                real* psalp2, real* pcalp2,
                                real* pm12, real* pM12, real* pM21,
                                real* pS12) {
  real s12 = 0, m12 = 0, M12 = 0, M21 = 0, S12 = 0;
  real lon12, lon12s;
  int latsign, lonsign, swapp;
  real sbet1, cbet1, sbet2, cbet2, s12x = 0, m12x = 0;
  real dn1, dn2, lam12, slam12, clam12;
  real a12 = 0, sig12, calp1 = 0, salp1 = 0, calp2 = 0, salp2 = 0;
  real Ca[nC];
  boolx meridian;
  /* somg12 > 1 marks that it needs to be calculated */
  real omg12 = 0, somg12 = 2, comg12 = 0;

  unsigned outmask =
    (ps12 ? GEOD_DISTANCE : GEOD_NONE) |
    (pm12 ? GEOD_REDUCEDLENGTH : GEOD_NONE) |
    (pM12 || pM21 ? GEOD_GEODESICSCALE : GEOD_NONE) |
    (pS12 ? GEOD_AREA : GEOD_NONE);

  outmask &= OUT_ALL;
  /* Compute longitude difference (AngDiff does this carefully).  Result is
   * in [-180, 180] but -180 is only for west-going geodesics.  180 is for
   * east-going and meridional geodesics. */
  lon12 = AngDiff(lon1, lon2, &lon12s);
  /* Make longitude difference positive. */
  lonsign = lon12 >= 0 ? 1 : -1;
  /* If very close to being on the same half-meridian, then make it so. */
  lon12 = lonsign * AngRound(lon12);
  lon12s = AngRound((180 - lon12) - lonsign * lon12s);
  lam12 = lon12 * degree;
  if (lon12 > 90) {
    sincosdx(lon12s, &slam12, &clam12);
    clam12 = -clam12;
  } else
    sincosdx(lon12, &slam12, &clam12);

  /* If really close to the equator, treat as on equator. */
  lat1 = AngRound(LatFix(lat1));
  lat2 = AngRound(LatFix(lat2));
  /* Swap points so that point with higher (abs) latitude is point 1
   * If one latitude is a nan, then it becomes lat1. */
  swapp = fabs(lat1) < fabs(lat2) ? -1 : 1;
  if (swapp < 0) {
    lonsign *= -1;
    swapx(&lat1, &lat2);
  }
  /* Make lat1 <= 0 */
  latsign = lat1 < 0 ? 1 : -1;
  lat1 *= latsign;
  lat2 *= latsign;
  /* Now we have
   *
   *     0 <= lon12 <= 180
   *     -90 <= lat1 <= 0
   *     lat1 <= lat2 <= -lat1
   *
   * longsign, swapp, latsign register the transformation to bring the
   * coordinates to this canonical form.  In all cases, 1 means no change was
   * made.  We make these transformations so that there are few cases to
   * check, e.g., on verifying quadrants in atan2.  In addition, this
   * enforces some symmetries in the results returned. */

  sincosdx(lat1, &sbet1, &cbet1); sbet1 *= g->f1;
  /* Ensure cbet1 = +epsilon at poles */
  norm2(&sbet1, &cbet1); cbet1 = maxx(tiny, cbet1);

  sincosdx(lat2, &sbet2, &cbet2); sbet2 *= g->f1;
  /* Ensure cbet2 = +epsilon at poles */
  norm2(&sbet2, &cbet2); cbet2 = maxx(tiny, cbet2);

  /* If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
   * |bet1| - |bet2|.  Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
   * a better measure.  This logic is used in assigning calp2 in Lambda12.
   * Sometimes these quantities vanish and in that case we force bet2 = +/-
   * bet1 exactly.  An example where is is necessary is the inverse problem
   * 48.522876735459 0 -48.52287673545898293 179.599720456223079643
   * which failed with Visual Studio 10 (Release and Debug) */

  if (cbet1 < -sbet1) {
    if (cbet2 == cbet1)
      sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
  } else {
    if (fabs(sbet2) == -sbet1)
      cbet2 = cbet1;
  }

  dn1 = sqrt(1 + g->ep2 * sq(sbet1));
  dn2 = sqrt(1 + g->ep2 * sq(sbet2));

  meridian = lat1 == -90 || slam12 == 0;

  if (meridian) {

    /* Endpoints are on a single full meridian, so the geodesic might lie on
     * a meridian. */

    real ssig1, csig1, ssig2, csig2;
    calp1 = clam12; salp1 = slam12; /* Head to the target longitude */
    calp2 = 1; salp2 = 0;           /* At the target we're heading north */

    /* tan(bet) = tan(sig) * cos(alp) */
    ssig1 = sbet1; csig1 = calp1 * cbet1;
    ssig2 = sbet2; csig2 = calp2 * cbet2;

    /* sig12 = sig2 - sig1 */
    sig12 = atan2(maxx((real)(0), csig1 * ssig2 - ssig1 * csig2),
                                  csig1 * csig2 + ssig1 * ssig2);
    Lengths(g, g->n, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
            cbet1, cbet2, &s12x, &m12x, nullptr,
            (outmask & GEOD_GEODESICSCALE) ? &M12 : nullptr,
            (outmask & GEOD_GEODESICSCALE) ? &M21 : nullptr,
            Ca);
    /* Add the check for sig12 since zero length geodesics might yield m12 <
     * 0.  Test case was
     *
     *    echo 20.001 0 20.001 0 | GeodSolve -i
     *
     * In fact, we will have sig12 > pi/2 for meridional geodesic which is
     * not a shortest path. */
    if (sig12 < 1 || m12x >= 0) {
      /* Need at least 2, to handle 90 0 90 180 */
      if (sig12 < 3 * tiny)
        sig12 = m12x = s12x = 0;
      m12x *= g->b;
      s12x *= g->b;
      a12 = sig12 / degree;
    } else
      /* m12 < 0, i.e., prolate and too close to anti-podal */
      meridian = FALSE;
  }

  if (!meridian &&
      sbet1 == 0 &&           /* and sbet2 == 0 */
      /* Mimic the way Lambda12 works with calp1 = 0 */
      (g->f <= 0 || lon12s >= g->f * 180)) {

    /* Geodesic runs along equator */
    calp1 = calp2 = 0; salp1 = salp2 = 1;
    s12x = g->a * lam12;
    sig12 = omg12 = lam12 / g->f1;
    m12x = g->b * sin(sig12);
    if (outmask & GEOD_GEODESICSCALE)
      M12 = M21 = cos(sig12);
    a12 = lon12 / g->f1;

  } else if (!meridian) {

    /* Now point1 and point2 belong within a hemisphere bounded by a
     * meridian and geodesic is neither meridional or equatorial. */

    /* Figure a starting point for Newton's method */
    real dnm = 0;
    sig12 = InverseStart(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2,
                         lam12, slam12, clam12,
                         &salp1, &calp1, &salp2, &calp2, &dnm,
                         Ca);

    if (sig12 >= 0) {
      /* Short lines (InverseStart sets salp2, calp2, dnm) */
      s12x = sig12 * g->b * dnm;
      m12x = sq(dnm) * g->b * sin(sig12 / dnm);
      if (outmask & GEOD_GEODESICSCALE)
        M12 = M21 = cos(sig12 / dnm);
      a12 = sig12 / degree;
      omg12 = lam12 / (g->f1 * dnm);
    } else {

      /* Newton's method.  This is a straightforward solution of f(alp1) =
       * lambda12(alp1) - lam12 = 0 with one wrinkle.  f(alp) has exactly one
       * root in the interval (0, pi) and its derivative is positive at the
       * root.  Thus f(alp) is positive for alp > alp1 and negative for alp <
       * alp1.  During the course of the iteration, a range (alp1a, alp1b) is
       * maintained which brackets the root and with each evaluation of
       * f(alp) the range is shrunk, if possible.  Newton's method is
       * restarted whenever the derivative of f is negative (because the new
       * value of alp1 is then further from the solution) or if the new
       * estimate of alp1 lies outside (0,pi); in this case, the new starting
       * guess is taken to be (alp1a + alp1b) / 2. */
      real ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0, domg12 = 0;
      unsigned numit = 0;
      /* Bracketing range */
      real salp1a = tiny, calp1a = 1, salp1b = tiny, calp1b = -1;
      boolx tripn = FALSE;
      boolx tripb = FALSE;
      for (; numit < maxit2; ++numit) {
        /* the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
         * WGS84 and random input: mean = 2.85, sd = 0.60 */
        real dv = 0,
          v = Lambda12(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
                        slam12, clam12,
                        &salp2, &calp2, &sig12, &ssig1, &csig1, &ssig2, &csig2,
                        &eps, &domg12, numit < maxit1, &dv, Ca);
        /* 2 * tol0 is approximately 1 ulp for a number in [0, pi]. */
        /* Reversed test to allow escape with NaNs */
        if (tripb || !(fabs(v) >= (tripn ? 8 : 1) * tol0)) break;
        /* Update bracketing values */
        if (v > 0 && (numit > maxit1 || calp1/salp1 > calp1b/salp1b))
          { salp1b = salp1; calp1b = calp1; }
        else if (v < 0 && (numit > maxit1 || calp1/salp1 < calp1a/salp1a))
          { salp1a = salp1; calp1a = calp1; }
        if (numit < maxit1 && dv > 0) {
          real
            dalp1 = -v/dv;
          real
            sdalp1 = sin(dalp1), cdalp1 = cos(dalp1),
            nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
          if (nsalp1 > 0 && fabs(dalp1) < pi) {
            calp1 = calp1 * cdalp1 - salp1 * sdalp1;
            salp1 = nsalp1;
            norm2(&salp1, &calp1);
            /* In some regimes we don't get quadratic convergence because
             * slope -> 0.  So use convergence conditions based on epsilon
             * instead of sqrt(epsilon). */
            tripn = fabs(v) <= 16 * tol0;
            continue;
          }
        }
        /* Either dv was not positive or updated value was outside legal
         * range.  Use the midpoint of the bracket as the next estimate.
         * This mechanism is not needed for the WGS84 ellipsoid, but it does
         * catch problems with more eccentric ellipsoids.  Its efficacy is
         * such for the WGS84 test set with the starting guess set to alp1 =
         * 90deg:
         * the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
         * WGS84 and random input: mean = 4.74, sd = 0.99 */
        salp1 = (salp1a + salp1b)/2;
        calp1 = (calp1a + calp1b)/2;
        norm2(&salp1, &calp1);
        tripn = FALSE;
        tripb = (fabs(salp1a - salp1) + (calp1a - calp1) < tolb ||
                 fabs(salp1 - salp1b) + (calp1 - calp1b) < tolb);
      }
      Lengths(g, eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
              cbet1, cbet2, &s12x, &m12x, nullptr,
              (outmask & GEOD_GEODESICSCALE) ? &M12 : nullptr,
              (outmask & GEOD_GEODESICSCALE) ? &M21 : nullptr, Ca);
      m12x *= g->b;
      s12x *= g->b;
      a12 = sig12 / degree;
      if (outmask & GEOD_AREA) {
        /* omg12 = lam12 - domg12 */
        real sdomg12 = sin(domg12), cdomg12 = cos(domg12);
        somg12 = slam12 * cdomg12 - clam12 * sdomg12;
        comg12 = clam12 * cdomg12 + slam12 * sdomg12;
      }
    }
  }

  if (outmask & GEOD_DISTANCE)
    s12 = 0 + s12x;             /* Convert -0 to 0 */

  if (outmask & GEOD_REDUCEDLENGTH)
    m12 = 0 + m12x;             /* Convert -0 to 0 */

  if (outmask & GEOD_AREA) {
    real
      /* From Lambda12: sin(alp1) * cos(bet1) = sin(alp0) */
      salp0 = salp1 * cbet1,
      calp0 = hypotx(calp1, salp1 * sbet1); /* calp0 > 0 */
    real alp12;
    if (calp0 != 0 && salp0 != 0) {
      real
        /* From Lambda12: tan(bet) = tan(sig) * cos(alp) */
        ssig1 = sbet1, csig1 = calp1 * cbet1,
        ssig2 = sbet2, csig2 = calp2 * cbet2,
        k2 = sq(calp0) * g->ep2,
        eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2),
        /* Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0). */
        A4 = sq(g->a) * calp0 * salp0 * g->e2;
      real B41, B42;
      norm2(&ssig1, &csig1);
      norm2(&ssig2, &csig2);
      C4f(g, eps, Ca);
      B41 = SinCosSeries(FALSE, ssig1, csig1, Ca, nC4);
      B42 = SinCosSeries(FALSE, ssig2, csig2, Ca, nC4);
      S12 = A4 * (B42 - B41);
    } else
      /* Avoid problems with indeterminate sig1, sig2 on equator */
      S12 = 0;

    if (!meridian && somg12 > 1) {
      somg12 = sin(omg12); comg12 = cos(omg12);
    }

    if (!meridian &&
        /* omg12 < 3/4 * pi */
        comg12 > -(real)(0.7071) &&     /* Long difference not too big */
        sbet2 - sbet1 < (real)(1.75)) { /* Lat difference not too big */
      /* Use tan(Gamma/2) = tan(omg12/2)
       * * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
       * with tan(x/2) = sin(x)/(1+cos(x)) */
      real
        domg12 = 1 + comg12, dbet1 = 1 + cbet1, dbet2 = 1 + cbet2;
      alp12 = 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
                         domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) );
    } else {
      /* alp12 = alp2 - alp1, used in atan2 so no need to normalize */
      real
        salp12 = salp2 * calp1 - calp2 * salp1,
        calp12 = calp2 * calp1 + salp2 * salp1;
      /* The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
       * salp12 = -0 and alp12 = -180.  However this depends on the sign
       * being attached to 0 correctly.  The following ensures the correct
       * behavior. */
      if (salp12 == 0 && calp12 < 0) {
        salp12 = tiny * calp1;
        calp12 = -1;
      }
      alp12 = atan2(salp12, calp12);
    }
    S12 += g->c2 * alp12;
    S12 *= swapp * lonsign * latsign;
    /* Convert -0 to 0 */
    S12 += 0;
  }

  /* Convert calp, salp to azimuth accounting for lonsign, swapp, latsign. */
  if (swapp < 0) {
    swapx(&salp1, &salp2);
    swapx(&calp1, &calp2);
    if (outmask & GEOD_GEODESICSCALE)
      swapx(&M12, &M21);
  }

  salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
  salp2 *= swapp * lonsign; calp2 *= swapp * latsign;

  if (psalp1) *psalp1 = salp1;
  if (pcalp1) *pcalp1 = calp1;
  if (psalp2) *psalp2 = salp2;
  if (pcalp2) *pcalp2 = calp2;

  if (outmask & GEOD_DISTANCE)
    *ps12 = s12;
  if (outmask & GEOD_REDUCEDLENGTH)
    *pm12 = m12;
  if (outmask & GEOD_GEODESICSCALE) {
    if (pM12) *pM12 = M12;
    if (pM21) *pM21 = M21;
  }
  if (outmask & GEOD_AREA)
    *pS12 = S12;

  /* Returned value in [0, 180] */
  return a12;
}

real geod_geninverse(const struct geod_geodesic* g,
                     real lat1, real lon1, real lat2, real lon2,
                     real* ps12, real* pazi1, real* pazi2,
                     real* pm12, real* pM12, real* pM21, real* pS12) {
  real salp1, calp1, salp2, calp2,
    a12 = geod_geninverse_int(g, lat1, lon1, lat2, lon2, ps12,
                              &salp1, &calp1, &salp2, &calp2,
                              pm12, pM12, pM21, pS12);
  if (pazi1) *pazi1 = atan2dx(salp1, calp1);
  if (pazi2) *pazi2 = atan2dx(salp2, calp2);
  return a12;
}

void geod_inverseline(struct geod_geodesicline* l,
                      const struct geod_geodesic* g,
                      real lat1, real lon1, real lat2, real lon2,
                      unsigned caps) {
  real salp1, calp1,
    a12 = geod_geninverse_int(g, lat1, lon1, lat2, lon2, nullptr,
                              &salp1, &calp1, nullptr, nullptr,
                              nullptr, nullptr, nullptr, nullptr),
    azi1 = atan2dx(salp1, calp1);
  caps = caps ? caps : GEOD_DISTANCE_IN | GEOD_LONGITUDE;
  /* Ensure that a12 can be converted to a distance */
  if (caps & (OUT_ALL & GEOD_DISTANCE_IN)) caps |= GEOD_DISTANCE;
  geod_lineinit_int(l, g, lat1, lon1, azi1, salp1, calp1, caps);
  geod_setarc(l, a12);
}

void geod_inverse(const struct geod_geodesic* g,
                  real lat1, real lon1, real lat2, real lon2,
                  real* ps12, real* pazi1, real* pazi2) {
  geod_geninverse(g, lat1, lon1, lat2, lon2, ps12, pazi1, pazi2,
                  nullptr, nullptr, nullptr, nullptr);
}

real SinCosSeries(boolx sinp, real sinx, real cosx, const real c[], int n) {
  /* Evaluate
   * y = sinp ? sum(c[i] * sin( 2*i    * x), i, 1, n) :
   *            sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
   * using Clenshaw summation.  N.B. c[0] is unused for sin series
   * Approx operation count = (n + 5) mult and (2 * n + 2) add */
  real ar, y0, y1;
  c += (n + sinp);              /* Point to one beyond last element */
  ar = 2 * (cosx - sinx) * (cosx + sinx); /* 2 * cos(2 * x) */
  y0 = (n & 1) ? *--c : 0; y1 = 0;        /* accumulators for sum */
  /* Now n is even */
  n /= 2;
  while (n--) {
    /* Unroll loop x 2, so accumulators return to their original role */
    y1 = ar * y0 - y1 + *--c;
    y0 = ar * y1 - y0 + *--c;
  }
  return sinp
    ? 2 * sinx * cosx * y0      /* sin(2 * x) * y0 */
    : cosx * (y0 - y1);         /* cos(x) * (y0 - y1) */
}

void Lengths(const struct geod_geodesic* g,
             real eps, real sig12,
             real ssig1, real csig1, real dn1,
             real ssig2, real csig2, real dn2,
             real cbet1, real cbet2,
             real* ps12b, real* pm12b, real* pm0,
             real* pM12, real* pM21,
             /* Scratch area of the right size */
             real Ca[]) {
  real m0 = 0, J12 = 0, A1 = 0, A2 = 0;
  real Cb[nC];

  /* Return m12b = (reduced length)/b; also calculate s12b = distance/b,
   * and m0 = coefficient of secular term in expression for reduced length. */
  boolx redlp = pm12b || pm0 || pM12 || pM21;
  if (ps12b || redlp) {
    A1 = A1m1f(eps);
    C1f(eps, Ca);
    if (redlp) {
      A2 = A2m1f(eps);
      C2f(eps, Cb);
      m0 = A1 - A2;
      A2 = 1 + A2;
    }
    A1 = 1 + A1;
  }
  if (ps12b) {
    real B1 = SinCosSeries(TRUE, ssig2, csig2, Ca, nC1) -
      SinCosSeries(TRUE, ssig1, csig1, Ca, nC1);
    /* Missing a factor of b */
    *ps12b = A1 * (sig12 + B1);
    if (redlp) {
      real B2 = SinCosSeries(TRUE, ssig2, csig2, Cb, nC2) -
        SinCosSeries(TRUE, ssig1, csig1, Cb, nC2);
      J12 = m0 * sig12 + (A1 * B1 - A2 * B2);
    }
  } else if (redlp) {
    /* Assume here that nC1 >= nC2 */
    int l;
    for (l = 1; l <= nC2; ++l)
      Cb[l] = A1 * Ca[l] - A2 * Cb[l];
    J12 = m0 * sig12 + (SinCosSeries(TRUE, ssig2, csig2, Cb, nC2) -
                        SinCosSeries(TRUE, ssig1, csig1, Cb, nC2));
  }
  if (pm0) *pm0 = m0;
  if (pm12b)
    /* Missing a factor of b.
     * Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
     * accurate cancellation in the case of coincident points. */
    *pm12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
      csig1 * csig2 * J12;
  if (pM12 || pM21) {
    real csig12 = csig1 * csig2 + ssig1 * ssig2;
    real t = g->ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
    if (pM12)
      *pM12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
    if (pM21)
      *pM21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
  }
}

real Astroid(real x, real y) {
  /* Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
   * This solution is adapted from Geocentric::Reverse. */
  real k;
  real
    p = sq(x),
    q = sq(y),
    r = (p + q - 1) / 6;
  if ( !(q == 0 && r <= 0) ) {
    real
      /* Avoid possible division by zero when r = 0 by multiplying equations
       * for s and t by r^3 and r, resp. */
      S = p * q / 4,            /* S = r^3 * s */
      r2 = sq(r),
      r3 = r * r2,
      /* The discriminant of the quadratic equation for T3.  This is zero on
       * the evolute curve p^(1/3)+q^(1/3) = 1 */
      disc = S * (S + 2 * r3);
    real u = r;
    real v, uv, w;
    if (disc >= 0) {
      real T3 = S + r3, T;
      /* Pick the sign on the sqrt to maximize abs(T3).  This minimizes loss
       * of precision due to cancellation.  The result is unchanged because
       * of the way the T is used in definition of u. */
      T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); /* T3 = (r * t)^3 */
      /* N.B. cbrtx always returns the real root.  cbrtx(-8) = -2. */
      T = cbrtx(T3);            /* T = r * t */
      /* T can be zero; but then r2 / T -> 0. */
      u += T + (T != 0 ? r2 / T : 0);
    } else {
      /* T is complex, but the way u is defined the result is real. */
      real ang = atan2(sqrt(-disc), -(S + r3));
      /* There are three possible cube roots.  We choose the root which
       * avoids cancellation.  Note that disc < 0 implies that r < 0. */
      u += 2 * r * cos(ang / 3);
    }
    v = sqrt(sq(u) + q);              /* guaranteed positive */
    /* Avoid loss of accuracy when u < 0. */
    uv = u < 0 ? q / (v - u) : u + v; /* u+v, guaranteed positive */
    w = (uv - q) / (2 * v);           /* positive? */
    /* Rearrange expression for k to avoid loss of accuracy due to
     * subtraction.  Division by 0 not possible because uv > 0, w >= 0. */
    k = uv / (sqrt(uv + sq(w)) + w);   /* guaranteed positive */
  } else {               /* q == 0 && r <= 0 */
    /* y = 0 with |x| <= 1.  Handle this case directly.
     * for y small, positive root is k = abs(y)/sqrt(1-x^2) */
    k = 0;
  }
  return k;
}

real InverseStart(const struct geod_geodesic* g,
                  real sbet1, real cbet1, real dn1,
                  real sbet2, real cbet2, real dn2,
                  real lam12, real slam12, real clam12,
                  real* psalp1, real* pcalp1,
                  /* Only updated if return val >= 0 */
                  real* psalp2, real* pcalp2,
                  /* Only updated for short lines */
                  real* pdnm,
                  /* Scratch area of the right size */
                  real Ca[]) {
  real salp1 = 0, calp1 = 0, salp2 = 0, calp2 = 0, dnm = 0;

  /* Return a starting point for Newton's method in salp1 and calp1 (function
   * value is -1).  If Newton's method doesn't need to be used, return also
   * salp2 and calp2 and function value is sig12. */
  real
    sig12 = -1,               /* Return value */
    /* bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0] */
    sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
    cbet12 = cbet2 * cbet1 + sbet2 * sbet1;
  real sbet12a;
  boolx shortline = cbet12 >= 0 && sbet12 < (real)(0.5) &&
    cbet2 * lam12 < (real)(0.5);
  real somg12, comg12, ssig12, csig12;
  sbet12a = sbet2 * cbet1 + cbet2 * sbet1;
  if (shortline) {
    real sbetm2 = sq(sbet1 + sbet2), omg12;
    /* sin((bet1+bet2)/2)^2
     * =  (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2) */
    sbetm2 /= sbetm2 + sq(cbet1 + cbet2);
    dnm = sqrt(1 + g->ep2 * sbetm2);
    omg12 = lam12 / (g->f1 * dnm);
    somg12 = sin(omg12); comg12 = cos(omg12);
  } else {
    somg12 = slam12; comg12 = clam12;
  }

  salp1 = cbet2 * somg12;
  calp1 = comg12 >= 0 ?
    sbet12 + cbet2 * sbet1 * sq(somg12) / (1 + comg12) :
    sbet12a - cbet2 * sbet1 * sq(somg12) / (1 - comg12);

  ssig12 = hypotx(salp1, calp1);
  csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;

  if (shortline && ssig12 < g->etol2) {
    /* really short lines */
    salp2 = cbet1 * somg12;
    calp2 = sbet12 - cbet1 * sbet2 *
      (comg12 >= 0 ? sq(somg12) / (1 + comg12) : 1 - comg12);
    norm2(&salp2, &calp2);
    /* Set return value */
    sig12 = atan2(ssig12, csig12);
  } else if (fabs(g->n) > (real)(0.1) || /* No astroid calc if too eccentric */
             csig12 >= 0 ||
             ssig12 >= 6 * fabs(g->n) * pi * sq(cbet1)) {
    /* Nothing to do, zeroth order spherical approximation is OK */
  } else {
    /* Scale lam12 and bet2 to x, y coordinate system where antipodal point
     * is at origin and singular point is at y = 0, x = -1. */
    real y, lamscale, betscale;
    /* Volatile declaration needed to fix inverse case
     * 56.320923501171 0 -56.320923501171 179.664747671772880215
     * which otherwise fails with g++ 4.4.4 x86 -O3 */
    volatile real x;
    real lam12x = atan2(-slam12, -clam12); /* lam12 - pi */
    if (g->f >= 0) {            /* In fact f == 0 does not get here */
      /* x = dlong, y = dlat */
      {
        real
          k2 = sq(sbet1) * g->ep2,
          eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2);
        lamscale = g->f * cbet1 * A3f(g, eps) * pi;
      }
      betscale = lamscale * cbet1;

      x = lam12x / lamscale;
      y = sbet12a / betscale;
    } else {                    /* f < 0 */
      /* x = dlat, y = dlong */
      real
        cbet12a = cbet2 * cbet1 - sbet2 * sbet1,
        bet12a = atan2(sbet12a, cbet12a);
      real m12b, m0;
      /* In the case of lon12 = 180, this repeats a calculation made in
       * Inverse. */
      Lengths(g, g->n, pi + bet12a,
              sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
              cbet1, cbet2, nullptr, &m12b, &m0, nullptr, nullptr, Ca);
      x = -1 + m12b / (cbet1 * cbet2 * m0 * pi);
      betscale = x < -(real)(0.01) ? sbet12a / x :
        -g->f * sq(cbet1) * pi;
      lamscale = betscale / cbet1;
      y = lam12x / lamscale;
    }

    if (y > -tol1 && x > -1 - xthresh) {
      /* strip near cut */
      if (g->f >= 0) {
        salp1 = minx((real)(1), -(real)(x)); calp1 = - sqrt(1 - sq(salp1));
      } else {
        calp1 = maxx((real)(x > -tol1 ? 0 : -1), (real)(x));
        salp1 = sqrt(1 - sq(calp1));
      }
    } else {
      /* Estimate alp1, by solving the astroid problem.
       *
       * Could estimate alpha1 = theta + pi/2, directly, i.e.,
       *   calp1 = y/k; salp1 = -x/(1+k);  for f >= 0
       *   calp1 = x/(1+k); salp1 = -y/k;  for f < 0 (need to check)
       *
       * However, it's better to estimate omg12 from astroid and use
       * spherical formula to compute alp1.  This reduces the mean number of
       * Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
       * (min 0 max 5).  The changes in the number of iterations are as
       * follows:
       *
       * change percent
       *    1       5
       *    0      78
       *   -1      16
       *   -2       0.6
       *   -3       0.04
       *   -4       0.002
       *
       * The histogram of iterations is (m = number of iterations estimating
       * alp1 directly, n = number of iterations estimating via omg12, total
       * number of trials = 148605):
       *
       *  iter    m      n
       *    0   148    186
       *    1 13046  13845
       *    2 93315 102225
       *    3 36189  32341
       *    4  5396      7
       *    5   455      1
       *    6    56      0
       *
       * Because omg12 is near pi, estimate work with omg12a = pi - omg12 */
      real k = Astroid(x, y);
      real
        omg12a = lamscale * ( g->f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
      somg12 = sin(omg12a); comg12 = -cos(omg12a);
      /* Update spherical estimate of alp1 using omg12 instead of lam12 */
      salp1 = cbet2 * somg12;
      calp1 = sbet12a - cbet2 * sbet1 * sq(somg12) / (1 - comg12);
    }
  }
  /* Sanity check on starting guess.  Backwards check allows NaN through. */
  if (!(salp1 <= 0))
    norm2(&salp1, &calp1);
  else {
    salp1 = 1; calp1 = 0;
  }

  *psalp1 = salp1;
  *pcalp1 = calp1;
  if (shortline)
    *pdnm = dnm;
  if (sig12 >= 0) {
    *psalp2 = salp2;
    *pcalp2 = calp2;
  }
  return sig12;
}

real Lambda12(const struct geod_geodesic* g,
              real sbet1, real cbet1, real dn1,
              real sbet2, real cbet2, real dn2,
              real salp1, real calp1,
              real slam120, real clam120,
              real* psalp2, real* pcalp2,
              real* psig12,
              real* pssig1, real* pcsig1,
              real* pssig2, real* pcsig2,
              real* peps,
              real* pdomg12,
              boolx diffp, real* pdlam12,
              /* Scratch area of the right size */
              real Ca[]) {
  real salp2 = 0, calp2 = 0, sig12 = 0,
    ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0,
    domg12 = 0, dlam12 = 0;
  real salp0, calp0;
  real somg1, comg1, somg2, comg2, somg12, comg12, lam12;
  real B312, eta, k2;

  if (sbet1 == 0 && calp1 == 0)
    /* Break degeneracy of equatorial line.  This case has already been
     * handled. */
    calp1 = -tiny;

  /* sin(alp1) * cos(bet1) = sin(alp0) */
  salp0 = salp1 * cbet1;
  calp0 = hypotx(calp1, salp1 * sbet1); /* calp0 > 0 */

  /* tan(bet1) = tan(sig1) * cos(alp1)
   * tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1) */
  ssig1 = sbet1; somg1 = salp0 * sbet1;
  csig1 = comg1 = calp1 * cbet1;
  norm2(&ssig1, &csig1);
  /* norm2(&somg1, &comg1); -- don't need to normalize! */

  /* Enforce symmetries in the case abs(bet2) = -bet1.  Need to be careful
   * about this case, since this can yield singularities in the Newton
   * iteration.
   * sin(alp2) * cos(bet2) = sin(alp0) */
  salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1;
  /* calp2 = sqrt(1 - sq(salp2))
   *       = sqrt(sq(calp0) - sq(sbet2)) / cbet2
   * and subst for calp0 and rearrange to give (choose positive sqrt
   * to give alp2 in [0, pi/2]). */
  calp2 = cbet2 != cbet1 || fabs(sbet2) != -sbet1 ?
    sqrt(sq(calp1 * cbet1) +
         (cbet1 < -sbet1 ?
          (cbet2 - cbet1) * (cbet1 + cbet2) :
          (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 :
    fabs(calp1);
  /* tan(bet2) = tan(sig2) * cos(alp2)
   * tan(omg2) = sin(alp0) * tan(sig2). */
  ssig2 = sbet2; somg2 = salp0 * sbet2;
  csig2 = comg2 = calp2 * cbet2;
  norm2(&ssig2, &csig2);
  /* norm2(&somg2, &comg2); -- don't need to normalize! */

  /* sig12 = sig2 - sig1, limit to [0, pi] */
  sig12 = atan2(maxx((real)(0), csig1 * ssig2 - ssig1 * csig2),
                                csig1 * csig2 + ssig1 * ssig2);

  /* omg12 = omg2 - omg1, limit to [0, pi] */
  somg12 = maxx((real)(0), comg1 * somg2 - somg1 * comg2);
  comg12 =                 comg1 * comg2 + somg1 * somg2;
  /* eta = omg12 - lam120 */
  eta = atan2(somg12 * clam120 - comg12 * slam120,
              comg12 * clam120 + somg12 * slam120);
  k2 = sq(calp0) * g->ep2;
  eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2);
  C3f(g, eps, Ca);
  B312 = (SinCosSeries(TRUE, ssig2, csig2, Ca, nC3-1) -
          SinCosSeries(TRUE, ssig1, csig1, Ca, nC3-1));
  domg12 = -g->f * A3f(g, eps) * salp0 * (sig12 + B312);
  lam12 = eta + domg12;

  if (diffp) {
    if (calp2 == 0)
      dlam12 = - 2 * g->f1 * dn1 / sbet1;
    else {
      Lengths(g, eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
              cbet1, cbet2, nullptr, &dlam12, nullptr, nullptr, nullptr, Ca);
      dlam12 *= g->f1 / (calp2 * cbet2);
    }
  }

  *psalp2 = salp2;
  *pcalp2 = calp2;
  *psig12 = sig12;
  *pssig1 = ssig1;
  *pcsig1 = csig1;
  *pssig2 = ssig2;
  *pcsig2 = csig2;
  *peps = eps;
  *pdomg12 = domg12;
  if (diffp)
    *pdlam12 = dlam12;

  return lam12;
}

real A3f(const struct geod_geodesic* g, real eps) {
  /* Evaluate A3 */
  return polyval(nA3 - 1, g->A3x, eps);
}

void C3f(const struct geod_geodesic* g, real eps, real c[]) {
  /* Evaluate C3 coeffs
   * Elements c[1] through c[nC3 - 1] are set */
  real mult = 1;
  int o = 0, l;
  for (l = 1; l < nC3; ++l) {   /* l is index of C3[l] */
    int m = nC3 - l - 1;        /* order of polynomial in eps */
    mult *= eps;
    c[l] = mult * polyval(m, g->C3x + o, eps);
    o += m + 1;
  }
}

void C4f(const struct geod_geodesic* g, real eps, real c[]) {
  /* Evaluate C4 coeffs
   * Elements c[0] through c[nC4 - 1] are set */
  real mult = 1;
  int o = 0, l;
  for (l = 0; l < nC4; ++l) {   /* l is index of C4[l] */
    int m = nC4 - l - 1;        /* order of polynomial in eps */
    c[l] = mult * polyval(m, g->C4x + o, eps);
    o += m + 1;
    mult *= eps;
  }
}

/* The scale factor A1-1 = mean value of (d/dsigma)I1 - 1 */
real A1m1f(real eps)  {
  static const real coeff[] = {
    /* (1-eps)*A1-1, polynomial in eps2 of order 3 */
    1, 4, 64, 0, 256,
  };
  int m = nA1/2;
  real t = polyval(m, coeff, sq(eps)) / coeff[m + 1];
  return (t + eps) / (1 - eps);
}

/* The coefficients C1[l] in the Fourier expansion of B1 */
void C1f(real eps, real c[])  {
  static const real coeff[] = {
    /* C1[1]/eps^1, polynomial in eps2 of order 2 */
    -1, 6, -16, 32,
    /* C1[2]/eps^2, polynomial in eps2 of order 2 */
    -9, 64, -128, 2048,
    /* C1[3]/eps^3, polynomial in eps2 of order 1 */
    9, -16, 768,
    /* C1[4]/eps^4, polynomial in eps2 of order 1 */
    3, -5, 512,
    /* C1[5]/eps^5, polynomial in eps2 of order 0 */
    -7, 1280,
    /* C1[6]/eps^6, polynomial in eps2 of order 0 */
    -7, 2048,
  };
  real
    eps2 = sq(eps),
    d = eps;
  int o = 0, l;
  for (l = 1; l <= nC1; ++l) {  /* l is index of C1p[l] */
    int m = (nC1 - l) / 2;      /* order of polynomial in eps^2 */
    c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1];
    o += m + 2;
    d *= eps;
  }
}

/* The coefficients C1p[l] in the Fourier expansion of B1p */
void C1pf(real eps, real c[])  {
  static const real coeff[] = {
    /* C1p[1]/eps^1, polynomial in eps2 of order 2 */
    205, -432, 768, 1536,
    /* C1p[2]/eps^2, polynomial in eps2 of order 2 */
    4005, -4736, 3840, 12288,
    /* C1p[3]/eps^3, polynomial in eps2 of order 1 */
    -225, 116, 384,
    /* C1p[4]/eps^4, polynomial in eps2 of order 1 */
    -7173, 2695, 7680,
    /* C1p[5]/eps^5, polynomial in eps2 of order 0 */
    3467, 7680,
    /* C1p[6]/eps^6, polynomial in eps2 of order 0 */
    38081, 61440,
  };
  real
    eps2 = sq(eps),
    d = eps;
  int o = 0, l;
  for (l = 1; l <= nC1p; ++l) { /* l is index of C1p[l] */
    int m = (nC1p - l) / 2;     /* order of polynomial in eps^2 */
    c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1];
    o += m + 2;
    d *= eps;
  }
}

/* The scale factor A2-1 = mean value of (d/dsigma)I2 - 1 */
real A2m1f(real eps)  {
  static const real coeff[] = {
    /* (eps+1)*A2-1, polynomial in eps2 of order 3 */
    -11, -28, -192, 0, 256,
  };
  int m = nA2/2;
  real t = polyval(m, coeff, sq(eps)) / coeff[m + 1];
  return (t - eps) / (1 + eps);
}

/* The coefficients C2[l] in the Fourier expansion of B2 */
void C2f(real eps, real c[])  {
  static const real coeff[] = {
    /* C2[1]/eps^1, polynomial in eps2 of order 2 */
    1, 2, 16, 32,
    /* C2[2]/eps^2, polynomial in eps2 of order 2 */
    35, 64, 384, 2048,
    /* C2[3]/eps^3, polynomial in eps2 of order 1 */
    15, 80, 768,
    /* C2[4]/eps^4, polynomial in eps2 of order 1 */
    7, 35, 512,
    /* C2[5]/eps^5, polynomial in eps2 of order 0 */
    63, 1280,
    /* C2[6]/eps^6, polynomial in eps2 of order 0 */
    77, 2048,
  };
  real
    eps2 = sq(eps),
    d = eps;
  int o = 0, l;
  for (l = 1; l <= nC2; ++l) { /* l is index of C2[l] */
    int m = (nC2 - l) / 2;     /* order of polynomial in eps^2 */
    c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1];
    o += m + 2;
    d *= eps;
  }
}

/* The scale factor A3 = mean value of (d/dsigma)I3 */
void A3coeff(struct geod_geodesic* g) {
  static const real coeff[] = {
    /* A3, coeff of eps^5, polynomial in n of order 0 */
    -3, 128,
    /* A3, coeff of eps^4, polynomial in n of order 1 */
    -2, -3, 64,
    /* A3, coeff of eps^3, polynomial in n of order 2 */
    -1, -3, -1, 16,
    /* A3, coeff of eps^2, polynomial in n of order 2 */
    3, -1, -2, 8,
    /* A3, coeff of eps^1, polynomial in n of order 1 */
    1, -1, 2,
    /* A3, coeff of eps^0, polynomial in n of order 0 */
    1, 1,
  };
  int o = 0, k = 0, j;
  for (j = nA3 - 1; j >= 0; --j) {             /* coeff of eps^j */
    int m = nA3 - j - 1 < j ? nA3 - j - 1 : j; /* order of polynomial in n */
    g->A3x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1];
    o += m + 2;
  }
}

/* The coefficients C3[l] in the Fourier expansion of B3 */
void C3coeff(struct geod_geodesic* g) {
  static const real coeff[] = {
    /* C3[1], coeff of eps^5, polynomial in n of order 0 */
    3, 128,
    /* C3[1], coeff of eps^4, polynomial in n of order 1 */
    2, 5, 128,
    /* C3[1], coeff of eps^3, polynomial in n of order 2 */
    -1, 3, 3, 64,
    /* C3[1], coeff of eps^2, polynomial in n of order 2 */
    -1, 0, 1, 8,
    /* C3[1], coeff of eps^1, polynomial in n of order 1 */
    -1, 1, 4,
    /* C3[2], coeff of eps^5, polynomial in n of order 0 */
    5, 256,
    /* C3[2], coeff of eps^4, polynomial in n of order 1 */
    1, 3, 128,
    /* C3[2], coeff of eps^3, polynomial in n of order 2 */
    -3, -2, 3, 64,
    /* C3[2], coeff of eps^2, polynomial in n of order 2 */
    1, -3, 2, 32,
    /* C3[3], coeff of eps^5, polynomial in n of order 0 */
    7, 512,
    /* C3[3], coeff of eps^4, polynomial in n of order 1 */
    -10, 9, 384,
    /* C3[3], coeff of eps^3, polynomial in n of order 2 */
    5, -9, 5, 192,
    /* C3[4], coeff of eps^5, polynomial in n of order 0 */
    7, 512,
    /* C3[4], coeff of eps^4, polynomial in n of order 1 */
    -14, 7, 512,
    /* C3[5], coeff of eps^5, polynomial in n of order 0 */
    21, 2560,
  };
  int o = 0, k = 0, l, j;
  for (l = 1; l < nC3; ++l) {                    /* l is index of C3[l] */
    for (j = nC3 - 1; j >= l; --j) {             /* coeff of eps^j */
      int m = nC3 - j - 1 < j ? nC3 - j - 1 : j; /* order of polynomial in n */
      g->C3x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1];
      o += m + 2;
    }
  }
}

/* The coefficients C4[l] in the Fourier expansion of I4 */
void C4coeff(struct geod_geodesic* g) {
  static const real coeff[] = {
    /* C4[0], coeff of eps^5, polynomial in n of order 0 */
    97, 15015,
    /* C4[0], coeff of eps^4, polynomial in n of order 1 */
    1088, 156, 45045,
    /* C4[0], coeff of eps^3, polynomial in n of order 2 */
    -224, -4784, 1573, 45045,
    /* C4[0], coeff of eps^2, polynomial in n of order 3 */
    -10656, 14144, -4576, -858, 45045,
    /* C4[0], coeff of eps^1, polynomial in n of order 4 */
    64, 624, -4576, 6864, -3003, 15015,
    /* C4[0], coeff of eps^0, polynomial in n of order 5 */
    100, 208, 572, 3432, -12012, 30030, 45045,
    /* C4[1], coeff of eps^5, polynomial in n of order 0 */
    1, 9009,
    /* C4[1], coeff of eps^4, polynomial in n of order 1 */
    -2944, 468, 135135,
    /* C4[1], coeff of eps^3, polynomial in n of order 2 */
    5792, 1040, -1287, 135135,
    /* C4[1], coeff of eps^2, polynomial in n of order 3 */
    5952, -11648, 9152, -2574, 135135,
    /* C4[1], coeff of eps^1, polynomial in n of order 4 */
    -64, -624, 4576, -6864, 3003, 135135,
    /* C4[2], coeff of eps^5, polynomial in n of order 0 */
    8, 10725,
    /* C4[2], coeff of eps^4, polynomial in n of order 1 */
    1856, -936, 225225,
    /* C4[2], coeff of eps^3, polynomial in n of order 2 */
    -8448, 4992, -1144, 225225,
    /* C4[2], coeff of eps^2, polynomial in n of order 3 */
    -1440, 4160, -4576, 1716, 225225,
    /* C4[3], coeff of eps^5, polynomial in n of order 0 */
    -136, 63063,
    /* C4[3], coeff of eps^4, polynomial in n of order 1 */
    1024, -208, 105105,
    /* C4[3], coeff of eps^3, polynomial in n of order 2 */
    3584, -3328, 1144, 315315,
    /* C4[4], coeff of eps^5, polynomial in n of order 0 */
    -128, 135135,
    /* C4[4], coeff of eps^4, polynomial in n of order 1 */
    -2560, 832, 405405,
    /* C4[5], coeff of eps^5, polynomial in n of order 0 */
    128, 99099,
  };
  int o = 0, k = 0, l, j;
  for (l = 0; l < nC4; ++l) {        /* l is index of C4[l] */
    for (j = nC4 - 1; j >= l; --j) { /* coeff of eps^j */
      int m = nC4 - j - 1;           /* order of polynomial in n */
      g->C4x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1];
      o += m + 2;
    }
  }
}

int transit(real lon1, real lon2) {
  real lon12;
  /* Return 1 or -1 if crossing prime meridian in east or west direction.
   * Otherwise return zero. */
  /* Compute lon12 the same way as Geodesic::Inverse. */
  lon1 = AngNormalize(lon1);
  lon2 = AngNormalize(lon2);
  lon12 = AngDiff(lon1, lon2, nullptr);
  return lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 :
    (lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0);
}

int transitdirect(real lon1, real lon2) {
  /* Compute exactly the parity of
     int(ceil(lon2 / 360)) - int(ceil(lon1 / 360)) */
  lon1 = remainderx(lon1, (real)(720));
  lon2 = remainderx(lon2, (real)(720));
  return ( (lon2 <= 0 && lon2 > -360 ? 1 : 0) -
           (lon1 <= 0 && lon1 > -360 ? 1 : 0) );
}

void accini(real s[]) {
  /* Initialize an accumulator; this is an array with two elements. */
  s[0] = s[1] = 0;
}

void acccopy(const real s[], real t[]) {
  /* Copy an accumulator; t = s. */
  t[0] = s[0]; t[1] = s[1];
}

void accadd(real s[], real y) {
  /* Add y to an accumulator. */
  real u, z = sumx(y, s[1], &u);
  s[0] = sumx(z, s[0], &s[1]);
  if (s[0] == 0)
    s[0] = u;
  else
    s[1] = s[1] + u;
}

real accsum(const real s[], real y) {
  /* Return accumulator + y (but don't add to accumulator). */
  real t[2];
  acccopy(s, t);
  accadd(t, y);
  return t[0];
}

void accneg(real s[]) {
  /* Negate an accumulator. */
  s[0] = -s[0]; s[1] = -s[1];
}

void accrem(real s[], real y) {
  /* Reduce to [-y/2, y/2]. */
  s[0] = remainderx(s[0], y);
  accadd(s, (real)(0));
}

void geod_polygon_init(struct geod_polygon* p, boolx polylinep) {
  p->polyline = (polylinep != 0);
  geod_polygon_clear(p);
}

void geod_polygon_clear(struct geod_polygon* p) {
  p->lat0 = p->lon0 = p->lat = p->lon = NaN;
  accini(p->P);
  accini(p->A);
  p->num = p->crossings = 0;
}

void geod_polygon_addpoint(const struct geod_geodesic* g,
                           struct geod_polygon* p,
                           real lat, real lon) {
  lon = AngNormalize(lon);
  if (p->num == 0) {
    p->lat0 = p->lat = lat;
    p->lon0 = p->lon = lon;
  } else {
    real s12, S12 = 0;       /* Initialize S12 to stop Visual Studio warning */
    geod_geninverse(g, p->lat, p->lon, lat, lon,
                    &s12, nullptr, nullptr, nullptr, nullptr, nullptr,
                    p->polyline ? nullptr : &S12);
    accadd(p->P, s12);
    if (!p->polyline) {
      accadd(p->A, S12);
      p->crossings += transit(p->lon, lon);
    }
    p->lat = lat; p->lon = lon;
  }
  ++p->num;
}

void geod_polygon_addedge(const struct geod_geodesic* g,
                          struct geod_polygon* p,
                          real azi, real s) {
  if (p->num) {              /* Do nothing is num is zero */
    /* Initialize S12 to stop Visual Studio warning.  Initialization of lat and
     * lon is to make CLang static analyzer happy. */
    real lat = 0, lon = 0, S12 = 0;
    geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_UNROLL, s,
                   &lat, &lon, nullptr,
                   nullptr, nullptr, nullptr, nullptr,
                   p->polyline ? nullptr : &S12);
    accadd(p->P, s);
    if (!p->polyline) {
      accadd(p->A, S12);
      p->crossings += transitdirect(p->lon, lon);
    }
    p->lat = lat; p->lon = lon;
    ++p->num;
  }
}

unsigned geod_polygon_compute(const struct geod_geodesic* g,
                              const struct geod_polygon* p,
                              boolx reverse, boolx sign,
                              real* pA, real* pP) {
  real s12, S12, t[2];
  if (p->num < 2) {
    if (pP) *pP = 0;
    if (!p->polyline && pA) *pA = 0;
    return p->num;
  }
  if (p->polyline) {
    if (pP) *pP = p->P[0];
    return p->num;
  }
  geod_geninverse(g, p->lat, p->lon, p->lat0, p->lon0,
                  &s12, nullptr, nullptr, nullptr, nullptr, nullptr, &S12);
  if (pP) *pP = accsum(p->P, s12);
  acccopy(p->A, t);
  accadd(t, S12);
  if (pA) *pA = areareduceA(t, 4 * pi * g->c2,
                            p->crossings + transit(p->lon, p->lon0),
                            reverse, sign);
  return p->num;
}

unsigned geod_polygon_testpoint(const struct geod_geodesic* g,
                                const struct geod_polygon* p,
                                real lat, real lon,
                                boolx reverse, boolx sign,
                                real* pA, real* pP) {
  real perimeter, tempsum;
  int crossings, i;
  unsigned num = p->num + 1;
  if (num == 1) {
    if (pP) *pP = 0;
    if (!p->polyline && pA) *pA = 0;
    return num;
  }
  perimeter = p->P[0];
  tempsum = p->polyline ? 0 : p->A[0];
  crossings = p->crossings;
  for (i = 0; i < (p->polyline ? 1 : 2); ++i) {
    real s12, S12 = 0;       /* Initialize S12 to stop Visual Studio warning */
    geod_geninverse(g,
                    i == 0 ? p->lat  : lat, i == 0 ? p->lon  : lon,
                    i != 0 ? p->lat0 : lat, i != 0 ? p->lon0 : lon,
                    &s12, nullptr, nullptr, nullptr, nullptr, nullptr,
                    p->polyline ? nullptr : &S12);
    perimeter += s12;
    if (!p->polyline) {
      tempsum += S12;
      crossings += transit(i == 0 ? p->lon  : lon,
                           i != 0 ? p->lon0 : lon);
    }
  }

  if (pP) *pP = perimeter;
  if (p->polyline)
    return num;

  if (pA) *pA = areareduceB(tempsum, 4 * pi * g->c2, crossings, reverse, sign);
  return num;
}

unsigned geod_polygon_testedge(const struct geod_geodesic* g,
                               const struct geod_polygon* p,
                               real azi, real s,
                               boolx reverse, boolx sign,
                               real* pA, real* pP) {
  real perimeter, tempsum;
  int crossings;
  unsigned num = p->num + 1;
  if (num == 1) {               /* we don't have a starting point! */
    if (pP) *pP = NaN;
    if (!p->polyline && pA) *pA = NaN;
    return 0;
  }
  perimeter = p->P[0] + s;
  if (p->polyline) {
    if (pP) *pP = perimeter;
    return num;
  }

  tempsum = p->A[0];
  crossings = p->crossings;
  {
    /* Initialization of lat, lon, and S12 is to make CLang static analyzer
     * happy. */
    real lat = 0, lon = 0, s12, S12 = 0;
    geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_UNROLL, s,
                   &lat, &lon, nullptr,
                   nullptr, nullptr, nullptr, nullptr, &S12);
    tempsum += S12;
    crossings += transitdirect(p->lon, lon);
    geod_geninverse(g, lat,  lon, p->lat0,  p->lon0,
                    &s12, nullptr, nullptr, nullptr, nullptr, nullptr, &S12);
    perimeter += s12;
    tempsum += S12;
    crossings += transit(lon, p->lon0);
  }

  if (pP) *pP = perimeter;
  if (pA) *pA = areareduceB(tempsum, 4 * pi * g->c2, crossings, reverse, sign);
  return num;
}

void geod_polygonarea(const struct geod_geodesic* g,
                      real lats[], real lons[], int n,
                      real* pA, real* pP) {
  int i;
  struct geod_polygon p;
  geod_polygon_init(&p, FALSE);
  for (i = 0; i < n; ++i)
    geod_polygon_addpoint(g, &p, lats[i], lons[i]);
  geod_polygon_compute(g, &p, FALSE, TRUE, pA, pP);
}

real areareduceA(real area[], real area0,
                 int crossings, boolx reverse, boolx sign) {
  accrem(area, area0);
  if (crossings & 1)
    accadd(area, (area[0] < 0 ? 1 : -1) * area0/2);
  /* area is with the clockwise sense.  If !reverse convert to
   * counter-clockwise convention. */
  if (!reverse)
    accneg(area);
  /* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */
  if (sign) {
    if (area[0] > area0/2)
      accadd(area, -area0);
    else if (area[0] <= -area0/2)
      accadd(area, +area0);
  } else {
    if (area[0] >= area0)
      accadd(area, -area0);
    else if (area[0] < 0)
      accadd(area, +area0);
  }
  return 0 + area[0];
}

real areareduceB(real area, real area0,
                 int crossings, boolx reverse, boolx sign) {
  area = remainderx(area, area0);
    if (crossings & 1)
    area += (area < 0 ? 1 : -1) * area0/2;
  /* area is with the clockwise sense.  If !reverse convert to
   * counter-clockwise convention. */
  if (!reverse)
    area *= -1;
  /* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */
  if (sign) {
    if (area > area0/2)
      area -= area0;
    else if (area <= -area0/2)
      area += area0;
  } else {
    if (area >= area0)
      area -= area0;
    else if (area < 0)
      area += area0;
  }
  return 0 + area;
}

/** @endcond */