LocalCartesian.h 11.1 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
#pragma once
/**
 * \file NETGeographicLib/LocalCartesian.h
 * \brief Header for NETGeographicLib::LocalCartesian class
 *
 * NETGeographicLib is copyright (c) Scott Heiman (2013)
 * GeographicLib is Copyright (c) Charles Karney (2010-2012)
 * <charles@karney.com> and licensed under the MIT/X11 License.
 * For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/

namespace NETGeographicLib
{
    ref class Geocentric;
  /**
   * \brief .NET wrapper for GeographicLib::LocalCartesian.
   *
   * This class allows .NET applications to access GeographicLib::LocalCartesian.
   *
   * Convert between geodetic coordinates latitude = \e lat, longitude = \e
   * lon, height = \e h (measured vertically from the surface of the ellipsoid)
   * to local cartesian coordinates (\e x, \e y, \e z).  The origin of local
   * cartesian coordinate system is at \e lat = \e lat0, \e lon = \e lon0, \e h
   * = \e h0. The \e z axis is normal to the ellipsoid; the \e y axis points
   * due north.  The plane \e z = - \e h0 is tangent to the ellipsoid.
   *
   * The conversions all take place via geocentric coordinates using a
   * Geocentric object.
   *
   * C# Example:
   * \include example-LocalCartesian.cs
   * Managed C++ Example:
   * \include example-LocalCartesian.cpp
   * Visual Basic Example:
   * \include example-LocalCartesian.vb
   *
   * <B>INTERFACE DIFFERENCES:</B><BR>
   * Constructors have been provided that assume WGS84 parameters.
   *
   * The following functions are implemented as properties:
   * LatitudeOrigin, LongitudeOrigin, HeightOrigin, EquatorialRadius,
   * and Flattening.
   *
   * The rotation matrices returned by the Forward and Reverse functions
   * are 2D, 3 &times; 3 arrays rather than vectors.
   **********************************************************************/
    public ref class LocalCartesian
    {
        private:
        // the pointer to the GeographicLib::LocalCartesian.
        GeographicLib::LocalCartesian* m_pLocalCartesian;

        // the finalizer frees the unmanaged memory when the object is destroyed.
        !LocalCartesian(void);
    public:

        /**
         * Constructor setting the origin.
         *
         * @param[in] lat0 latitude at origin (degrees).
         * @param[in] lon0 longitude at origin (degrees).
         * @param[in] h0 height above ellipsoid at origin (meters); default 0.
         * @param[in] earth Geocentric object for the transformation; default
         *   Geocentric::WGS84.
         *
         * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].
         **********************************************************************/
        LocalCartesian(double lat0, double lon0, double h0,
                       Geocentric^ earth );

        /**
         * Constructor setting the origin and assuming a WGS84 ellipsoid.
         *
         * @param[in] lat0 latitude at origin (degrees).
         * @param[in] lon0 longitude at origin (degrees).
         * @param[in] h0 height above ellipsoid at origin (meters); default 0.
         *
         * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].
         **********************************************************************/
        LocalCartesian(double lat0, double lon0, double h0 );

        /**
         * Constructor that uses the provided ellipsoid.
         *
         * @param[in] earth Geocentric object for the transformation; default
         *   Geocentric::WGS84.
         *
         * Sets \e lat0 = 0, \e lon0 = 0, \e h0 = 0.
         **********************************************************************/
        LocalCartesian(Geocentric^ earth);

        /**
         * The default constructor assumes the WGS84 ellipsoid.
         *
         * Sets \e lat0 = 0, \e lon0 = 0, \e h0 = 0.
         **********************************************************************/
        LocalCartesian();

        /**
         * The destructor calls the finalizer.
         **********************************************************************/
        ~LocalCartesian()
        { this->!LocalCartesian(); }

        /**
         * Reset the origin.
         *
         * @param[in] lat0 latitude at origin (degrees).
         * @param[in] lon0 longitude at origin (degrees).
         * @param[in] h0 height above ellipsoid at origin (meters); default 0.
         *
         * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].
         **********************************************************************/
        void Reset(double lat0, double lon0, double h0 );

        /**
         * Convert from geodetic to local cartesian coordinates.
         *
         * @param[in] lat latitude of point (degrees).
         * @param[in] lon longitude of point (degrees).
         * @param[in] h height of point above the ellipsoid (meters).
         * @param[out] x local cartesian coordinate (meters).
         * @param[out] y local cartesian coordinate (meters).
         * @param[out] z local cartesian coordinate (meters).
         *
         * \e lat should be in the range [&minus;90&deg;, 90&deg;].
         **********************************************************************/
        void Forward(double lat, double lon, double h,
            [System::Runtime::InteropServices::Out] double% x,
            [System::Runtime::InteropServices::Out] double% y,
            [System::Runtime::InteropServices::Out] double% z);

        /**
         * Convert from geodetic to local cartesian coordinates and return rotation
         * matrix.
         *
         * @param[in] lat latitude of point (degrees).
         * @param[in] lon longitude of point (degrees).
         * @param[in] h height of point above the ellipsoid (meters).
         * @param[out] x local cartesian coordinate (meters).
         * @param[out] y local cartesian coordinate (meters).
         * @param[out] z local cartesian coordinate (meters).
         * @param[out] M a 3 &times; 3 rotation matrix.
         *
         * \e lat should be in the range [&minus;90&deg;, 90&deg;].
         *
         * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
         * express \e v as \e column vectors in one of two ways
         * - in east, north, up coordinates (where the components are relative to a
         *   local coordinate system at (\e lat, \e lon, \e h)); call this
         *   representation \e v1.
         * - in \e x, \e y, \e z coordinates (where the components are relative to
         *   the local coordinate system at (\e lat0, \e lon0, \e h0)); call this
         *   representation \e v0.
         * .
         * Then we have \e v0 = \e M &sdot; \e v1.
         **********************************************************************/
        void Forward(double lat, double lon, double h,
            [System::Runtime::InteropServices::Out] double% x,
            [System::Runtime::InteropServices::Out] double% y,
            [System::Runtime::InteropServices::Out] double% z,
            [System::Runtime::InteropServices::Out] array<double,2>^% M);

        /**
         * Convert from local cartesian to geodetic coordinates.
         *
         * @param[in] x local cartesian coordinate (meters).
         * @param[in] y local cartesian coordinate (meters).
         * @param[in] z local cartesian coordinate (meters).
         * @param[out] lat latitude of point (degrees).
         * @param[out] lon longitude of point (degrees).
         * @param[out] h height of point above the ellipsoid (meters).
         *
         * The value of \e lon returned is in the range [&minus;180&deg;,
         * 180&deg;).
         **********************************************************************/
        void Reverse(double x, double y, double z,
            [System::Runtime::InteropServices::Out] double% lat,
            [System::Runtime::InteropServices::Out] double% lon,
            [System::Runtime::InteropServices::Out] double% h);

        /**
         * Convert from local cartesian to geodetic coordinates and return rotation
         * matrix.
         *
         * @param[in] x local cartesian coordinate (meters).
         * @param[in] y local cartesian coordinate (meters).
         * @param[in] z local cartesian coordinate (meters).
         * @param[out] lat latitude of point (degrees).
         * @param[out] lon longitude of point (degrees).
         * @param[out] h height of point above the ellipsoid (meters).
         * @param[out] M a 3 &times; 3 rotation matrix.
         *
         * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
         * express \e v as \e column vectors in one of two ways
         * - in east, north, up coordinates (where the components are relative to a
         *   local coordinate system at (\e lat, \e lon, \e h)); call this
         *   representation \e v1.
         * - in \e x, \e y, \e z coordinates (where the components are relative to
         *   the local coordinate system at (\e lat0, \e lon0, \e h0)); call this
         *   representation \e v0.
         * .
         * Then we have \e v1 = \e M<sup>T</sup> &sdot; \e v0, where \e
         * M<sup>T</sup> is the transpose of \e M.
         **********************************************************************/
        void Reverse(double x, double y, double z,
            [System::Runtime::InteropServices::Out] double% lat,
            [System::Runtime::InteropServices::Out] double% lon,
            [System::Runtime::InteropServices::Out] double% h,
            [System::Runtime::InteropServices::Out] array<double,2>^% M);

        /** \name Inspector functions
         **********************************************************************/
        ///@{
        /**
         * @return latitude of the origin (degrees).
         **********************************************************************/
        property double LatitudeOrigin { double get(); }

        /**
         * @return longitude of the origin (degrees).
         **********************************************************************/
        property double LongitudeOrigin { double get(); }

        /**
         * @return height of the origin (meters).
         **********************************************************************/
        property double HeightOrigin { double get(); }

        /**
         * @return \e a the equatorial radius of the ellipsoid (meters).  This is
         *   the value of \e a inherited from the Geocentric object used in the
         *   constructor.
         **********************************************************************/
        property double EquatorialRadius { double get(); }

        /**
         * @return \e f the flattening of the ellipsoid.  This is the value
         *   inherited from the Geocentric object used in the constructor.
         **********************************************************************/
        property double Flattening { double get(); }
        ///@}
    };
} // namespace NETGeographicLib