Geocentric.h 10.5 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
/**
 * \file NETGeographicLib/Geocentric.h
 * \brief Header for NETGeographicLib::Geocentric class
 *
 * NETGeographicLib is copyright (c) Scott Heiman (2013)
 * GeographicLib is Copyright (c) Charles Karney (2010-2012)
 * <charles@karney.com> and licensed under the MIT/X11 License.
 * For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/
#pragma once

namespace NETGeographicLib
{
  /**
   * \brief .NET wrapper for GeographicLib::Geocentric.
   *
   * This class allows .NET applications to access GeographicLib::Geocentric.
   *
   * Convert between geodetic coordinates latitude = \e lat, longitude = \e
   * lon, height = \e h (measured vertically from the surface of the ellipsoid)
   * to geocentric coordinates (\e X, \e Y, \e Z).  The origin of geocentric
   * coordinates is at the center of the earth.  The \e Z axis goes thru the
   * north pole, \e lat = 90&deg;.  The \e X axis goes thru \e lat = 0,
   * \e lon = 0.  %Geocentric coordinates are also known as earth centered,
   * earth fixed (ECEF) coordinates.
   *
   * The conversion from geographic to geocentric coordinates is
   * straightforward.  For the reverse transformation we use
   * - H. Vermeille,
   *   <a href="https://doi.org/10.1007/s00190-002-0273-6"> Direct
   *   transformation from geocentric coordinates to geodetic coordinates</a>,
   *   J. Geodesy 76, 451--454 (2002).
   * .
   * Several changes have been made to ensure that the method returns accurate
   * results for all finite inputs (even if \e h is infinite).  The changes are
   * described in Appendix B of
   * - C. F. F. Karney,
   *   <a href="https://arxiv.org/abs/1102.1215v1">Geodesics
   *   on an ellipsoid of revolution</a>,
   *   Feb. 2011;
   *   preprint
   *   <a href="https://arxiv.org/abs/1102.1215v1">arxiv:1102.1215v1</a>.
   * .
   * See \ref geocentric for more information.
   *
   * The errors in these routines are close to round-off.  Specifically, for
   * points within 5000 km of the surface of the ellipsoid (either inside or
   * outside the ellipsoid), the error is bounded by 7 nm (7 nanometers) for
   * the WGS84 ellipsoid.  See \ref geocentric for further information on the
   * errors.
   *
   * C# Example:
   * \include example-Geocentric.cs
   * Managed C++ Example:
   * \include example-Geocentric.cpp
   * Visual Basic Example:
   * \include example-Geocentric.vb
   *
   * <B>INTERFACE DIFFERENCES:</B><BR>
   * A default constructor is provided that assumes WGS84 parameters.
   *
   * The EquatorialRadius and Flattening functions are implemented as properties.
   *
   * The Forward and Reverse functions return rotation matrices as 2D,
   * 3 &times; 3 arrays rather than vectors.
   **********************************************************************/
    public ref class Geocentric
    {
    private:
        // pointer to the unmanaged GeographicLib::Geocentric
        const GeographicLib::Geocentric* m_pGeocentric;

        // The finalizer frees unmanaged memory when the object is destroyed.
        !Geocentric();
    public:
        /**
         * Constructor for a ellipsoid with
         *
         * @param[in] a equatorial radius (meters).
         * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
         *   Negative \e f gives a prolate ellipsoid.
         * @exception GeographicErr if \e a or (1 &minus; \e f ) \e a is not
         *   positive.
         **********************************************************************/
        Geocentric(double a, double f);

        /**
         * A default constructor which assumes WGS84.
         **********************************************************************/
        Geocentric();

        /**
         * A constructor that is initialized from an unmanaged
         * GeographicLib::Geocentric.  For internal use only.
         * @param[in] g An existing GeographicLib::Geocentric.
         **********************************************************************/
        Geocentric( const GeographicLib::Geocentric& g );

        /**
         * The destructor calls the finalizer.
         **********************************************************************/
        ~Geocentric()
        { this->!Geocentric(); }

        /**
         * Convert from geodetic to geocentric coordinates.
         *
         * @param[in] lat latitude of point (degrees).
         * @param[in] lon longitude of point (degrees).
         * @param[in] h height of point above the ellipsoid (meters).
         * @param[out] X geocentric coordinate (meters).
         * @param[out] Y geocentric coordinate (meters).
         * @param[out] Z geocentric coordinate (meters).
         *
         * \e lat should be in the range [&minus;90&deg;, 90&deg;].
         **********************************************************************/
        void Forward(double lat, double lon, double h,
            [System::Runtime::InteropServices::Out] double% X,
            [System::Runtime::InteropServices::Out] double% Y,
            [System::Runtime::InteropServices::Out] double% Z);

        /**
         * Convert from geodetic to geocentric coordinates and return rotation
         * matrix.
         *
         * @param[in] lat latitude of point (degrees).
         * @param[in] lon longitude of point (degrees).
         * @param[in] h height of point above the ellipsoid (meters).
         * @param[out] X geocentric coordinate (meters).
         * @param[out] Y geocentric coordinate (meters).
         * @param[out] Z geocentric coordinate (meters).
         * @param[out] M a 3 &times; 3 rotation matrix.
         *
         * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
         * express \e v as \e column vectors in one of two ways
         * - in east, north, up coordinates (where the components are relative to a
         *   local coordinate system at (\e lat, \e lon, \e h)); call this
         *   representation \e v1.
         * - in geocentric \e X, \e Y, \e Z coordinates; call this representation
         *   \e v0.
         * .
         * Then we have \e v0 = \e M &sdot; \e v1.
         **********************************************************************/
        void Forward(double lat, double lon, double h,
            [System::Runtime::InteropServices::Out] double% X,
            [System::Runtime::InteropServices::Out] double% Y,
            [System::Runtime::InteropServices::Out] double% Z,
            [System::Runtime::InteropServices::Out] array<double,2>^% M);

        /**
         * Convert from geocentric to geodetic to coordinates.
         *
         * @param[in] X geocentric coordinate (meters).
         * @param[in] Y geocentric coordinate (meters).
         * @param[in] Z geocentric coordinate (meters).
         * @param[out] lat latitude of point (degrees).
         * @param[out] lon longitude of point (degrees).
         * @param[out] h height of point above the ellipsoid (meters).
         *
         * In general there are multiple solutions and the result which maximizes
         * \e h is returned.  If there are still multiple solutions with different
         * latitudes (applies only if \e Z = 0), then the solution with \e lat > 0
         * is returned.  If there are still multiple solutions with different
         * longitudes (applies only if \e X = \e Y = 0) then \e lon = 0 is
         * returned.  The value of \e h returned satisfies \e h &ge; &minus; \e a
         * (1 &minus; <i>e</i><sup>2</sup>) / sqrt(1 &minus; <i>e</i><sup>2</sup>
         * sin<sup>2</sup>\e lat).  The value of \e lon returned is in the range
         * [&minus;180&deg;, 180&deg;).
         **********************************************************************/
        void Reverse(double X, double Y, double Z,
            [System::Runtime::InteropServices::Out] double% lat,
            [System::Runtime::InteropServices::Out] double% lon,
            [System::Runtime::InteropServices::Out] double% h);

        /**
         * Convert from geocentric to geodetic to coordinates.
         *
         * @param[in] X geocentric coordinate (meters).
         * @param[in] Y geocentric coordinate (meters).
         * @param[in] Z geocentric coordinate (meters).
         * @param[out] lat latitude of point (degrees).
         * @param[out] lon longitude of point (degrees).
         * @param[out] h height of point above the ellipsoid (meters).
         * @param[out] M a 3 &times; 3 rotation matrix.
         *
         * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
         * express \e v as \e column vectors in one of two ways
         * - in east, north, up coordinates (where the components are relative to a
         *   local coordinate system at (\e lat, \e lon, \e h)); call this
         *   representation \e v1.
         * - in geocentric \e X, \e Y, \e Z coordinates; call this representation
         *   \e v0.
         * .
         * Then we have \e v1 = \e M<sup>T</sup> &sdot; \e v0, where \e
         * M<sup>T</sup> is the transpose of \e M.
         **********************************************************************/
        void Reverse(double X, double Y, double Z,
            [System::Runtime::InteropServices::Out] double% lat,
            [System::Runtime::InteropServices::Out] double% lon,
            [System::Runtime::InteropServices::Out] double% h,
            [System::Runtime::InteropServices::Out] array<double,2>^% M);

        /** \name Inspector functions
         **********************************************************************/
        ///@{
        /**
         * @return a pointer to the unmanaged GeographicLib::Geocentric.
         **********************************************************************/
        System::IntPtr^ GetUnmanaged();

        /**
         * @return \e a the equatorial radius of the ellipsoid (meters).  This is
         *   the value used in the constructor.
         **********************************************************************/
        property double EquatorialRadius { double get(); }

        /**
         * @return \e f the  flattening of the ellipsoid.  This is the
         *   value used in the constructor.
         **********************************************************************/
        property double Flattening { double get(); }
        ///@}
    };
} // namespace NETGeographicLib