SparseVector.h 12.8 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SPARSEVECTOR_H
#define EIGEN_SPARSEVECTOR_H

/** \class SparseVector
  *
  * \brief a sparse vector class
  *
  * \tparam _Scalar the scalar type, i.e. the type of the coefficients
  *
  * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN.
  */

namespace internal {
template<typename _Scalar, int _Options, typename _Index>
struct traits<SparseVector<_Scalar, _Options, _Index> >
{
  typedef _Scalar Scalar;
  typedef _Index Index;
  typedef Sparse StorageKind;
  typedef MatrixXpr XprKind;
  enum {
    IsColVector = _Options & RowMajorBit ? 0 : 1,

    RowsAtCompileTime = IsColVector ? Dynamic : 1,
    ColsAtCompileTime = IsColVector ? 1 : Dynamic,
    MaxRowsAtCompileTime = RowsAtCompileTime,
    MaxColsAtCompileTime = ColsAtCompileTime,
    Flags = _Options | NestByRefBit | LvalueBit,
    CoeffReadCost = NumTraits<Scalar>::ReadCost,
    SupportedAccessPatterns = InnerRandomAccessPattern
  };
};
}

template<typename _Scalar, int _Options, typename _Index>
class SparseVector
  : public SparseMatrixBase<SparseVector<_Scalar, _Options, _Index> >
{
  public:
    EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector)
    EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=)
    EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=)
//     EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, =)

  protected:
  public:

    typedef SparseMatrixBase<SparseVector> SparseBase;
    enum { IsColVector = internal::traits<SparseVector>::IsColVector };
    
    enum {
      Options = _Options
    };

    CompressedStorage<Scalar,Index> m_data;
    Index m_size;

    CompressedStorage<Scalar,Index>& _data() { return m_data; }
    CompressedStorage<Scalar,Index>& _data() const { return m_data; }

  public:

    EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; }
    EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; }
    EIGEN_STRONG_INLINE Index innerSize() const { return m_size; }
    EIGEN_STRONG_INLINE Index outerSize() const { return 1; }
    EIGEN_STRONG_INLINE Index innerNonZeros(Index j) const { eigen_assert(j==0); return m_size; }

    EIGEN_STRONG_INLINE const Scalar* _valuePtr() const { return &m_data.value(0); }
    EIGEN_STRONG_INLINE Scalar* _valuePtr() { return &m_data.value(0); }

    EIGEN_STRONG_INLINE const Index* _innerIndexPtr() const { return &m_data.index(0); }
    EIGEN_STRONG_INLINE Index* _innerIndexPtr() { return &m_data.index(0); }

    inline Scalar coeff(Index row, Index col) const
    {
      eigen_assert((IsColVector ? col : row)==0);
      return coeff(IsColVector ? row : col);
    }
    inline Scalar coeff(Index i) const { return m_data.at(i); }

    inline Scalar& coeffRef(Index row, Index col)
    {
      eigen_assert((IsColVector ? col : row)==0);
      return coeff(IsColVector ? row : col);
    }

    /** \returns a reference to the coefficient value at given index \a i
      * This operation involes a log(rho*size) binary search. If the coefficient does not
      * exist yet, then a sorted insertion into a sequential buffer is performed.
      *
      * This insertion might be very costly if the number of nonzeros above \a i is large.
      */
    inline Scalar& coeffRef(Index i)
    {
      return m_data.atWithInsertion(i);
    }

  public:

    class InnerIterator;

    inline void setZero() { m_data.clear(); }

    /** \returns the number of non zero coefficients */
    inline Index nonZeros() const  { return static_cast<Index>(m_data.size()); }

    inline void startVec(Index outer)
    {
      eigen_assert(outer==0);
    }

    inline Scalar& insertBackByOuterInner(Index outer, Index inner)
    {
      eigen_assert(outer==0);
      return insertBack(inner);
    }
    inline Scalar& insertBack(Index i)
    {
      m_data.append(0, i);
      return m_data.value(m_data.size()-1);
    }

    inline Scalar& insert(Index row, Index col)
    {
      Index inner = IsColVector ? row : col;
      Index outer = IsColVector ? col : row;
      eigen_assert(outer==0);
      return insert(inner);
    }
    Scalar& insert(Index i)
    {
      Index startId = 0;
      Index p = m_data.size() - 1;
      // TODO smart realloc
      m_data.resize(p+2,1);

      while ( (p >= startId) && (m_data.index(p) > i) )
      {
        m_data.index(p+1) = m_data.index(p);
        m_data.value(p+1) = m_data.value(p);
        --p;
      }
      m_data.index(p+1) = i;
      m_data.value(p+1) = 0;
      return m_data.value(p+1);
    }

    /**
      */
    inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); }


    inline void finalize() {}

    void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
    {
      m_data.prune(reference,epsilon);
    }

    void resize(Index rows, Index cols)
    {
      eigen_assert(rows==1 || cols==1);
      resize(IsColVector ? rows : cols);
    }

    void resize(Index newSize)
    {
      m_size = newSize;
      m_data.clear();
    }

    void resizeNonZeros(Index size) { m_data.resize(size); }

    inline SparseVector() : m_size(0) { resize(0); }

    inline SparseVector(Index size) : m_size(0) { resize(size); }

    inline SparseVector(Index rows, Index cols) : m_size(0) { resize(rows,cols); }

    template<typename OtherDerived>
    inline SparseVector(const MatrixBase<OtherDerived>& other)
      : m_size(0)
    {
      *this = other.derived();
    }

    template<typename OtherDerived>
    inline SparseVector(const SparseMatrixBase<OtherDerived>& other)
      : m_size(0)
    {
      *this = other.derived();
    }

    inline SparseVector(const SparseVector& other)
      : m_size(0)
    {
      *this = other.derived();
    }

    inline void swap(SparseVector& other)
    {
      std::swap(m_size, other.m_size);
      m_data.swap(other.m_data);
    }

    inline SparseVector& operator=(const SparseVector& other)
    {
      if (other.isRValue())
      {
        swap(other.const_cast_derived());
      }
      else
      {
        resize(other.size());
        m_data = other.m_data;
      }
      return *this;
    }

    template<typename OtherDerived>
    inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other)
    {
      if (int(RowsAtCompileTime)!=int(OtherDerived::RowsAtCompileTime))
        return Base::operator=(other.transpose());
      else
        return Base::operator=(other);
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename Lhs, typename Rhs>
    inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
    {
      return Base::operator=(product);
    }
    #endif

//       const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
//       if (needToTranspose)
//       {
//         // two passes algorithm:
//         //  1 - compute the number of coeffs per dest inner vector
//         //  2 - do the actual copy/eval
//         // Since each coeff of the rhs has to be evaluated twice, let's evauluate it if needed
//         typedef typename internal::nested<OtherDerived,2>::type OtherCopy;
//         OtherCopy otherCopy(other.derived());
//         typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
//
//         resize(other.rows(), other.cols());
//         Eigen::Map<VectorXi>(m_outerIndex,outerSize()).setZero();
//         // pass 1
//         // FIXME the above copy could be merged with that pass
//         for (int j=0; j<otherCopy.outerSize(); ++j)
//           for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
//             ++m_outerIndex[it.index()];
//
//         // prefix sum
//         int count = 0;
//         VectorXi positions(outerSize());
//         for (int j=0; j<outerSize(); ++j)
//         {
//           int tmp = m_outerIndex[j];
//           m_outerIndex[j] = count;
//           positions[j] = count;
//           count += tmp;
//         }
//         m_outerIndex[outerSize()] = count;
//         // alloc
//         m_data.resize(count);
//         // pass 2
//         for (int j=0; j<otherCopy.outerSize(); ++j)
//           for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
//           {
//             int pos = positions[it.index()]++;
//             m_data.index(pos) = j;
//             m_data.value(pos) = it.value();
//           }
//
//         return *this;
//       }
//       else
//       {
//         // there is no special optimization
//         return SparseMatrixBase<SparseMatrix>::operator=(other.derived());
//       }
//     }

    friend std::ostream & operator << (std::ostream & s, const SparseVector& m)
    {
      for (Index i=0; i<m.nonZeros(); ++i)
        s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
      s << std::endl;
      return s;
    }

    // this specialized version does not seems to be faster
//     Scalar dot(const SparseVector& other) const
//     {
//       int i=0, j=0;
//       Scalar res = 0;
//       asm("#begindot");
//       while (i<nonZeros() && j<other.nonZeros())
//       {
//         if (m_data.index(i)==other.m_data.index(j))
//         {
//           res += m_data.value(i) * internal::conj(other.m_data.value(j));
//           ++i; ++j;
//         }
//         else if (m_data.index(i)<other.m_data.index(j))
//           ++i;
//         else
//           ++j;
//       }
//       asm("#enddot");
//       return res;
//     }

    /** Destructor */
    inline ~SparseVector() {}

    /** Overloaded for performance */
    Scalar sum() const;

  public:

    /** \deprecated use setZero() and reserve() */
    EIGEN_DEPRECATED void startFill(Index reserve)
    {
      setZero();
      m_data.reserve(reserve);
    }

    /** \deprecated use insertBack(Index,Index) */
    EIGEN_DEPRECATED Scalar& fill(Index r, Index c)
    {
      eigen_assert(r==0 || c==0);
      return fill(IsColVector ? r : c);
    }

    /** \deprecated use insertBack(Index) */
    EIGEN_DEPRECATED Scalar& fill(Index i)
    {
      m_data.append(0, i);
      return m_data.value(m_data.size()-1);
    }

    /** \deprecated use insert(Index,Index) */
    EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c)
    {
      eigen_assert(r==0 || c==0);
      return fillrand(IsColVector ? r : c);
    }

    /** \deprecated use insert(Index) */
    EIGEN_DEPRECATED Scalar& fillrand(Index i)
    {
      return insert(i);
    }

    /** \deprecated use finalize() */
    EIGEN_DEPRECATED void endFill() {}
    
#   ifdef EIGEN_SPARSEVECTOR_PLUGIN
#     include EIGEN_SPARSEVECTOR_PLUGIN
#   endif
};

template<typename Scalar, int _Options, typename _Index>
class SparseVector<Scalar,_Options,_Index>::InnerIterator
{
  public:
    InnerIterator(const SparseVector& vec, Index outer=0)
      : m_data(vec.m_data), m_id(0), m_end(static_cast<Index>(m_data.size()))
    {
      eigen_assert(outer==0);
    }

    InnerIterator(const CompressedStorage<Scalar,Index>& data)
      : m_data(data), m_id(0), m_end(static_cast<Index>(m_data.size()))
    {}

    template<unsigned int Added, unsigned int Removed>
    InnerIterator(const Flagged<SparseVector,Added,Removed>& vec, Index )
      : m_data(vec._expression().m_data), m_id(0), m_end(m_data.size())
    {}

    inline InnerIterator& operator++() { m_id++; return *this; }

    inline Scalar value() const { return m_data.value(m_id); }
    inline Scalar& valueRef() { return const_cast<Scalar&>(m_data.value(m_id)); }

    inline Index index() const { return m_data.index(m_id); }
    inline Index row() const { return IsColVector ? index() : 0; }
    inline Index col() const { return IsColVector ? 0 : index(); }

    inline operator bool() const { return (m_id < m_end); }

  protected:
    const CompressedStorage<Scalar,Index>& m_data;
    Index m_id;
    const Index m_end;
};

#endif // EIGEN_SPARSEVECTOR_H