Umeyama.h 7.2 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_UMEYAMA_H
#define EIGEN_UMEYAMA_H

// This file requires the user to include 
// * Eigen/Core
// * Eigen/LU 
// * Eigen/SVD
// * Eigen/Array

#ifndef EIGEN_PARSED_BY_DOXYGEN

// These helpers are required since it allows to use mixed types as parameters
// for the Umeyama. The problem with mixed parameters is that the return type
// cannot trivially be deduced when float and double types are mixed.
namespace internal {

// Compile time return type deduction for different MatrixBase types.
// Different means here different alignment and parameters but the same underlying
// real scalar type.
template<typename MatrixType, typename OtherMatrixType>
struct umeyama_transform_matrix_type
{
  enum {
    MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime),

    // When possible we want to choose some small fixed size value since the result
    // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want.
    HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1
  };

  typedef Matrix<typename traits<MatrixType>::Scalar,
    HomogeneousDimension,
    HomogeneousDimension,
    AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor),
    HomogeneousDimension,
    HomogeneousDimension
  > type;
};

}

#endif

/**
* \geometry_module \ingroup Geometry_Module
*
* \brief Returns the transformation between two point sets.
*
* The algorithm is based on:
* "Least-squares estimation of transformation parameters between two point patterns",
* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
*
* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that
* \f{align*}
*   \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2
* \f}
* is minimized.
*
* The algorithm is based on the analysis of the covariance matrix
* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$
* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where 
* \f$d\f$ is corresponding to the dimension (which is typically small).
* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$
* though the actual computational effort lies in the covariance
* matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when 
* the input point sets have dimension \f$d \times m\f$.
*
* Currently the method is working only for floating point matrices.
*
* \todo Should the return type of umeyama() become a Transform?
*
* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$.
* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$.
* \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed.
* \return The homogeneous transformation 
* \f{align*}
*   T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}
* \f}
* minimizing the resudiual above. This transformation is always returned as an 
* Eigen::Matrix.
*/
template <typename Derived, typename OtherDerived>
typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type
umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true)
{
  typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
  typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef typename Derived::Index Index;

  EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value),
    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

  enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };

  typedef Matrix<Scalar, Dimension, 1> VectorType;
  typedef Matrix<Scalar, Dimension, Dimension> MatrixType;
  typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType;

  const Index m = src.rows(); // dimension
  const Index n = src.cols(); // number of measurements

  // required for demeaning ...
  const RealScalar one_over_n = 1 / static_cast<RealScalar>(n);

  // computation of mean
  const VectorType src_mean = src.rowwise().sum() * one_over_n;
  const VectorType dst_mean = dst.rowwise().sum() * one_over_n;

  // demeaning of src and dst points
  const RowMajorMatrixType src_demean = src.colwise() - src_mean;
  const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean;

  // Eq. (36)-(37)
  const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;

  // Eq. (38)
  const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();

  JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV);

  // Initialize the resulting transformation with an identity matrix...
  TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);

  // Eq. (39)
  VectorType S = VectorType::Ones(m);
  if (sigma.determinant()<0) S(m-1) = -1;

  // Eq. (40) and (43)
  const VectorType& d = svd.singularValues();
  Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
  if (rank == m-1) {
    if ( svd.matrixU().determinant() * svd.matrixV().determinant() > 0 ) {
      Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose();
    } else {
      const Scalar s = S(m-1); S(m-1) = -1;
      Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
      S(m-1) = s;
    }
  } else {
    Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
  }

  // Eq. (42)
  const Scalar c = 1/src_var * svd.singularValues().dot(S);

  // Eq. (41)
  // Note that we first assign dst_mean to the destination so that there no need
  // for a temporary.
  Rt.col(m).head(m) = dst_mean;
  Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean;

  if (with_scaling) Rt.block(0,0,m,m) *= c;

  return Rt;
}

#endif // EIGEN_UMEYAMA_H