GeneralMatrixMatrixTriangular.h 13.5 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H

Don Gagne's avatar
Don Gagne committed
13 14 15 16 17
namespace Eigen { 

template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_rank1_update;

LM's avatar
LM committed
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
namespace internal {

/**********************************************************************
* This file implements a general A * B product while
* evaluating only one triangular part of the product.
* This is more general version of self adjoint product (C += A A^T)
* as the level 3 SYRK Blas routine.
**********************************************************************/

// forward declarations (defined at the end of this file)
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
struct tribb_kernel;
  
/* Optimized matrix-matrix product evaluating only one triangular half */
template <typename Index,
          typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
          typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
Don Gagne's avatar
Don Gagne committed
35
                              int ResStorageOrder, int  UpLo, int Version = Specialized>
LM's avatar
LM committed
36 37 38 39
struct general_matrix_matrix_triangular_product;

// as usual if the result is row major => we transpose the product
template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
Don Gagne's avatar
Don Gagne committed
40 41 42
                          typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int  UpLo, int Version>
struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,UpLo,Version>
{
LM's avatar
LM committed
43 44
  typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
  static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride,
Don Gagne's avatar
Don Gagne committed
45
                                      const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resStride, const ResScalar& alpha)
LM's avatar
LM committed
46 47 48 49 50 51 52 53 54 55
  {
    general_matrix_matrix_triangular_product<Index,
        RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
        LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
        ColMajor, UpLo==Lower?Upper:Lower>
      ::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha);
  }
};

template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
Don Gagne's avatar
Don Gagne committed
56 57
                          typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int  UpLo, int Version>
struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,UpLo,Version>
LM's avatar
LM committed
58 59 60
{
  typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
  static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride,
Don Gagne's avatar
Don Gagne committed
61
                                      const RhsScalar* _rhs, Index rhsStride, ResScalar* res, Index resStride, const ResScalar& alpha)
LM's avatar
LM committed
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  {
    const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
    const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);

    typedef gebp_traits<LhsScalar,RhsScalar> Traits;

    Index kc = depth; // cache block size along the K direction
    Index mc = size;  // cache block size along the M direction
    Index nc = size;  // cache block size along the N direction
    computeProductBlockingSizes<LhsScalar,RhsScalar>(kc, mc, nc);
    // !!! mc must be a multiple of nr:
    if(mc > Traits::nr)
      mc = (mc/Traits::nr)*Traits::nr;

    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
    std::size_t sizeB = sizeW + kc*size;
    ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, kc*mc, 0);
    ei_declare_aligned_stack_constructed_variable(RhsScalar, allocatedBlockB, sizeB, 0);
    RhsScalar* blockB = allocatedBlockB + sizeW;
    
    gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
    gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
    gebp_kernel <LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
    tribb_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs, UpLo> sybb;

    for(Index k2=0; k2<depth; k2+=kc)
    {
Don Gagne's avatar
Don Gagne committed
89
      const Index actual_kc = (std::min)(k2+kc,depth)-k2;
LM's avatar
LM committed
90 91 92 93 94 95

      // note that the actual rhs is the transpose/adjoint of mat
      pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, size);

      for(Index i2=0; i2<size; i2+=mc)
      {
Don Gagne's avatar
Don Gagne committed
96
        const Index actual_mc = (std::min)(i2+mc,size)-i2;
LM's avatar
LM committed
97 98 99 100 101 102 103 104

        pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);

        // the selected actual_mc * size panel of res is split into three different part:
        //  1 - before the diagonal => processed with gebp or skipped
        //  2 - the actual_mc x actual_mc symmetric block => processed with a special kernel
        //  3 - after the diagonal => processed with gebp or skipped
        if (UpLo==Lower)
Don Gagne's avatar
Don Gagne committed
105
          gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, (std::min)(size,i2), alpha,
LM's avatar
LM committed
106 107 108 109 110 111 112
               -1, -1, 0, 0, allocatedBlockB);

        sybb(res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha, allocatedBlockB);

        if (UpLo==Upper)
        {
          Index j2 = i2+actual_mc;
Don Gagne's avatar
Don Gagne committed
113
          gebp(res+resStride*j2+i2, resStride, blockA, blockB+actual_kc*j2, actual_mc, actual_kc, (std::max)(Index(0), size-j2), alpha,
LM's avatar
LM committed
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
               -1, -1, 0, 0, allocatedBlockB);
        }
      }
    }
  }
};

// Optimized packed Block * packed Block product kernel evaluating only one given triangular part
// This kernel is built on top of the gebp kernel:
// - the current destination block is processed per panel of actual_mc x BlockSize
//   where BlockSize is set to the minimal value allowing gebp to be as fast as possible
// - then, as usual, each panel is split into three parts along the diagonal,
//   the sub blocks above and below the diagonal are processed as usual,
//   while the triangular block overlapping the diagonal is evaluated into a
//   small temporary buffer which is then accumulated into the result using a
//   triangular traversal.
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
struct tribb_kernel
{
  typedef gebp_traits<LhsScalar,RhsScalar,ConjLhs,ConjRhs> Traits;
  typedef typename Traits::ResScalar ResScalar;
  
  enum {
    BlockSize  = EIGEN_PLAIN_ENUM_MAX(mr,nr)
  };
Don Gagne's avatar
Don Gagne committed
139
  void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha, RhsScalar* workspace)
LM's avatar
LM committed
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  {
    gebp_kernel<LhsScalar, RhsScalar, Index, mr, nr, ConjLhs, ConjRhs> gebp_kernel;
    Matrix<ResScalar,BlockSize,BlockSize,ColMajor> buffer;

    // let's process the block per panel of actual_mc x BlockSize,
    // again, each is split into three parts, etc.
    for (Index j=0; j<size; j+=BlockSize)
    {
      Index actualBlockSize = std::min<Index>(BlockSize,size - j);
      const RhsScalar* actual_b = blockB+j*depth;

      if(UpLo==Upper)
        gebp_kernel(res+j*resStride, resStride, blockA, actual_b, j, depth, actualBlockSize, alpha,
                    -1, -1, 0, 0, workspace);

      // selfadjoint micro block
      {
        Index i = j;
        buffer.setZero();
        // 1 - apply the kernel on the temporary buffer
        gebp_kernel(buffer.data(), BlockSize, blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
                    -1, -1, 0, 0, workspace);
        // 2 - triangular accumulation
        for(Index j1=0; j1<actualBlockSize; ++j1)
        {
          ResScalar* r = res + (j+j1)*resStride + i;
          for(Index i1=UpLo==Lower ? j1 : 0;
              UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1)
            r[i1] += buffer(i1,j1);
        }
      }

      if(UpLo==Lower)
      {
        Index i = j+actualBlockSize;
        gebp_kernel(res+j*resStride+i, resStride, blockA+depth*i, actual_b, size-i, depth, actualBlockSize, alpha,
                    -1, -1, 0, 0, workspace);
      }
    }
  }
};

} // end namespace internal

// high level API

Don Gagne's avatar
Don Gagne committed
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
template<typename MatrixType, typename ProductType, int UpLo, bool IsOuterProduct>
struct general_product_to_triangular_selector;


template<typename MatrixType, typename ProductType, int UpLo>
struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,true>
{
  static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha)
  {
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::Index Index;
    
    typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
    typedef internal::blas_traits<Lhs> LhsBlasTraits;
    typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
    typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
    typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
    
    typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
    typedef internal::blas_traits<Rhs> RhsBlasTraits;
    typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
    typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
    typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());

    enum {
      StorageOrder = (internal::traits<MatrixType>::Flags&RowMajorBit) ? RowMajor : ColMajor,
      UseLhsDirectly = _ActualLhs::InnerStrideAtCompileTime==1,
      UseRhsDirectly = _ActualRhs::InnerStrideAtCompileTime==1
    };
    
    internal::gemv_static_vector_if<Scalar,Lhs::SizeAtCompileTime,Lhs::MaxSizeAtCompileTime,!UseLhsDirectly> static_lhs;
    ei_declare_aligned_stack_constructed_variable(Scalar, actualLhsPtr, actualLhs.size(),
      (UseLhsDirectly ? const_cast<Scalar*>(actualLhs.data()) : static_lhs.data()));
    if(!UseLhsDirectly) Map<typename _ActualLhs::PlainObject>(actualLhsPtr, actualLhs.size()) = actualLhs;
    
    internal::gemv_static_vector_if<Scalar,Rhs::SizeAtCompileTime,Rhs::MaxSizeAtCompileTime,!UseRhsDirectly> static_rhs;
    ei_declare_aligned_stack_constructed_variable(Scalar, actualRhsPtr, actualRhs.size(),
      (UseRhsDirectly ? const_cast<Scalar*>(actualRhs.data()) : static_rhs.data()));
    if(!UseRhsDirectly) Map<typename _ActualRhs::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
    
    
    selfadjoint_rank1_update<Scalar,Index,StorageOrder,UpLo,
                              LhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
                              RhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex>
          ::run(actualLhs.size(), mat.data(), mat.outerStride(), actualLhsPtr, actualRhsPtr, actualAlpha);
  }
};

template<typename MatrixType, typename ProductType, int UpLo>
struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
{
  static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha)
  {
    typedef typename MatrixType::Index Index;
    
    typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
    typedef internal::blas_traits<Lhs> LhsBlasTraits;
    typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
    typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
    typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
    
    typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
    typedef internal::blas_traits<Rhs> RhsBlasTraits;
    typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
    typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
    typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());

    typename ProductType::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());

    internal::general_matrix_matrix_triangular_product<Index,
      typename Lhs::Scalar, _ActualLhs::Flags&RowMajorBit ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
      typename Rhs::Scalar, _ActualRhs::Flags&RowMajorBit ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
      MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor, UpLo>
      ::run(mat.cols(), actualLhs.cols(),
            &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &actualRhs.coeffRef(0,0), actualRhs.outerStride(),
            mat.data(), mat.outerStride(), actualAlpha);
  }
};

LM's avatar
LM committed
267 268 269 270
template<typename MatrixType, unsigned int UpLo>
template<typename ProductDerived, typename _Lhs, typename _Rhs>
TriangularView<MatrixType,UpLo>& TriangularView<MatrixType,UpLo>::assignProduct(const ProductBase<ProductDerived, _Lhs,_Rhs>& prod, const Scalar& alpha)
{
Don Gagne's avatar
Don Gagne committed
271
  general_product_to_triangular_selector<MatrixType, ProductDerived, UpLo, (_Lhs::ColsAtCompileTime==1) || (_Rhs::RowsAtCompileTime==1)>::run(m_matrix.const_cast_derived(), prod.derived(), alpha);
LM's avatar
LM committed
272 273 274 275
  
  return *this;
}

Don Gagne's avatar
Don Gagne committed
276 277
} // end namespace Eigen

LM's avatar
LM committed
278
#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H