Newer
Older
#include "LinearGenerator.h"
#include "QGCLoggingCategory.h"
QGC_LOGGING_CATEGORY(LinearGeneratorLog, "LinearGeneratorLog")
#define CLIPPER_SCALE 1000000
#include "geometry/MeasurementArea.h"
#include "geometry/SafeArea.h"
#include "geometry/clipper/clipper.hpp"
#include "RoutingThread.h"
#include "nemo_interface/SnakeTile.h"
namespace routing {
bool linearTransects(const snake::FPolygon &polygon,
const std::vector<snake::FPolygon> &tiles,
snake::Length distance, snake::Angle angle,
snake::Length minLength, snake::Transects &transects);
const char *LinearGenerator::settingsGroup = "LinearGenerator";
const char *LinearGenerator::distanceName = "TransectDistance";
const char *LinearGenerator::alphaName = "Alpha";
const char *LinearGenerator::minLengthName = "MinLength";
LinearGenerator::LinearGenerator(QObject *parent)
: LinearGenerator(nullptr, parent) {}
LinearGenerator::LinearGenerator(GeneratorBase::Data d, QObject *parent)
: GeneratorBase(d, parent),
_metaDataMap(FactMetaData::createMapFromJsonFile(
QStringLiteral(":/json/LinearGenerator.SettingsGroup.json"), this)),
_distance(settingsGroup, _metaDataMap[distanceName]),
_alpha(settingsGroup, _metaDataMap[alphaName]),
_minLength(settingsGroup, _metaDataMap[minLengthName]) {
establishConnections();
}
QString LinearGenerator::editorQml() {
return QStringLiteral("LinearGeneratorEditor.qml");
}
QString LinearGenerator::mapVisualQml() { return QStringLiteral(""); }
QString LinearGenerator::name() { return QStringLiteral("Linear Generator"); }
QString LinearGenerator::abbreviation() { return QStringLiteral("L. Gen."); }
bool LinearGenerator::get(Generator &generator) {
if (_d) {
if (this->_d->isCorrect()) {
// Prepare data.
auto origin = this->_d->origin();
origin.setAltitude(0);
if (!origin.isValid()) {
qCDebug(LinearGeneratorLog) << "get(): origin invalid." << origin;
}
auto measurementArea =
getGeoArea<const MeasurementArea *>(*this->_d->areaList());
if (measurementArea == nullptr) {
qCDebug(LinearGeneratorLog) << "get(): measurement area == nullptr";
return false;
}
auto geoPolygon = measurementArea->coordinateList();
for (auto &v : geoPolygon) {
if (v.isValid()) {
v.setAltitude(0);
} else {
qCDebug(LinearGeneratorLog) << "get(): measurement area invalid.";
for (const auto &w : geoPolygon) {
qCDebug(LinearGeneratorLog) << w;
}
return false;
}
}
auto pPolygon = std::make_shared<snake::FPolygon>();
snake::areaToEnu(origin, geoPolygon, *pPolygon);
// Progress and tiles.
const auto &progress = measurementArea->progress();
const auto *tiles = measurementArea->tiles();
auto pTiles = std::make_shared<std::vector<snake::FPolygon>>();
if (progress.size() == tiles->count()) {
for (int i = 0; i < tiles->count(); ++i) {
if (progress[i] == 100) {
const QObject *obj = (*tiles)[int(i)];
const auto *tile = qobject_cast<const SnakeTile *>(obj);
if (tile != nullptr) {
snake::FPolygon tileENU;
snake::areaToEnu(origin, tile->coordinateList(), tileENU);
pTiles->push_back(std::move(tileENU));
} else {
qCDebug(LinearGeneratorLog) << "get(): tile == nullptr";
return false;
}
}
}
} else {
qCDebug(LinearGeneratorLog)
<< "get(): progress.size() != tiles->count().";
return false;
}
auto serviceArea = getGeoArea<const SafeArea *>(*this->_d->areaList());
if (serviceArea == nullptr) {
qCDebug(LinearGeneratorLog) << "get(): service area == nullptr";
return false;
}
auto geoDepot = serviceArea->depot();
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
if (!geoDepot.isValid()) {
qCDebug(LinearGeneratorLog) << "get(): depot invalid." << geoDepot;
return false;
}
snake::FPoint depot;
snake::toENU(origin, geoDepot, depot);
// Fetch transect parameter.
auto distance =
snake::Length(this->_distance.rawValue().toDouble() * bu::si::meter);
auto minLength =
snake::Length(this->_minLength.rawValue().toDouble() * bu::si::meter);
auto alpha =
snake::Angle(this->_alpha.rawValue().toDouble() * bu::degree::degree);
generator = [depot, pPolygon, pTiles, distance, alpha,
minLength](snake::Transects &transects) -> bool {
bool value = linearTransects(*pPolygon, *pTiles, distance, alpha,
minLength, transects);
transects.insert(transects.begin(), snake::FLineString{depot});
return value;
};
return true;
} else {
qCDebug(LinearGeneratorLog) << "get(): data invalid.";
return false;
}
} else {
qCDebug(LinearGeneratorLog) << "get(): data member not set.";
return false;
}
}
Fact *LinearGenerator::distance() { return &_distance; }
Fact *LinearGenerator::alpha() { return &_alpha; }
Fact *LinearGenerator::minLength() { return &_minLength; }
void LinearGenerator::establishConnections() {
if (this->_d != nullptr && !this->_connectionsEstablished) {
auto measurementArea =
getGeoArea<const MeasurementArea *>(*this->_d->areaList());
auto serviceArea = getGeoArea<const SafeArea *>(*this->_d->areaList());
if (measurementArea != nullptr && serviceArea != nullptr) {
GeneratorBase::establishConnections();
connect(this->_d, &AreaData::originChanged, this,
&GeneratorBase::generatorChanged);
connect(measurementArea, &MeasurementArea::progressChanged, this,
&GeneratorBase::generatorChanged);
connect(measurementArea, &MeasurementArea::tilesChanged, this,
&GeneratorBase::generatorChanged);
connect(measurementArea, &MeasurementArea::pathChanged, this,
&GeneratorBase::generatorChanged);
connect(serviceArea, &SafeArea::depotChanged, this,
&GeneratorBase::generatorChanged);
connect(this->distance(), &Fact::rawValueChanged, this,
&GeneratorBase::generatorChanged);
connect(this->alpha(), &Fact::rawValueChanged, this,
&GeneratorBase::generatorChanged);
connect(this->minLength(), &Fact::rawValueChanged, this,
&GeneratorBase::generatorChanged);
this->_connectionsEstablished = true;
}
}
}
void LinearGenerator::deleteConnections() {
if (this->_d != nullptr && this->_connectionsEstablished) {
auto measurementArea =
getGeoArea<const MeasurementArea *>(*this->_d->areaList());
auto serviceArea = getGeoArea<const SafeArea *>(*this->_d->areaList());
if (measurementArea != nullptr && serviceArea != nullptr) {
GeneratorBase::deleteConnections();
disconnect(this->_d, &AreaData::originChanged, this,
&GeneratorBase::generatorChanged);
disconnect(measurementArea, &MeasurementArea::progressChanged, this,
&GeneratorBase::generatorChanged);
disconnect(measurementArea, &MeasurementArea::tilesChanged, this,
&GeneratorBase::generatorChanged);
disconnect(measurementArea, &MeasurementArea::pathChanged, this,
&GeneratorBase::generatorChanged);
disconnect(serviceArea, &SafeArea::depotChanged, this,
&GeneratorBase::generatorChanged);
disconnect(this->distance(), &Fact::rawValueChanged, this,
&GeneratorBase::generatorChanged);
disconnect(this->alpha(), &Fact::rawValueChanged, this,
&GeneratorBase::generatorChanged);
disconnect(this->minLength(), &Fact::rawValueChanged, this,
&GeneratorBase::generatorChanged);
this->_connectionsEstablished = true;
}
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
}
}
bool linearTransects(const snake::FPolygon &polygon,
const std::vector<snake::FPolygon> &tiles,
snake::Length distance, snake::Angle angle,
snake::Length minLength, snake::Transects &transects) {
namespace tr = bg::strategy::transform;
auto s1 = std::chrono::high_resolution_clock::now();
// Check preconitions
if (polygon.outer().size() >= 3) {
// Convert to ENU system.
std::string error;
// Check validity.
if (!bg::is_valid(polygon, error)) {
std::stringstream ss;
ss << bg::wkt(polygon);
qCDebug(LinearGeneratorLog) << "linearTransects(): "
"invalid polygon. "
<< error.c_str() << ss.str().c_str();
} else {
tr::rotate_transformer<bg::degree, double, 2, 2> rotate(angle.value() *
180 / M_PI);
// Rotate polygon by angle and calculate bounding box.
snake::FPolygon polygonENURotated;
bg::transform(polygon.outer(), polygonENURotated.outer(), rotate);
snake::FBox box;
boost::geometry::envelope(polygonENURotated, box);
double x0 = box.min_corner().get<0>();
double y0 = box.min_corner().get<1>();
double x1 = box.max_corner().get<0>();
double y1 = box.max_corner().get<1>();
// Generate transects and convert them to clipper path.
size_t num_t = ceil((y1 - y0) / distance.value()); // number of transects
vector<ClipperLib::Path> transectsClipper;
transectsClipper.reserve(num_t);
for (size_t i = 0; i < num_t; ++i) {
// calculate transect
snake::FPoint v1{x0, y0 + i * distance.value()};
snake::FPoint v2{x1, y0 + i * distance.value()};
snake::FLineString transect;
transect.push_back(v1);
transect.push_back(v2);
// transform back
snake::FLineString temp_transect;
tr::rotate_transformer<bg::degree, double, 2, 2> rotate_back(
-angle.value() * 180 / M_PI);
bg::transform(transect, temp_transect, rotate_back);
// to clipper
ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(
temp_transect[0].get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(
temp_transect[0].get<1>() * CLIPPER_SCALE)};
ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(
temp_transect[1].get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(
temp_transect[1].get<1>() * CLIPPER_SCALE)};
ClipperLib::Path path{c1, c2};
transectsClipper.push_back(path);
}
if (transectsClipper.size() == 0) {
std::stringstream ss;
ss << "Not able to generate transects. Parameter: distance = "
<< distance << std::endl;
qCDebug(LinearGeneratorLog)
<< "linearTransects(): " << ss.str().c_str();
return false;
}
// Convert measurement area to clipper path.
snake::FPolygon shrinked;
snake::offsetPolygon(polygon, shrinked, -0.2);
auto &outer = shrinked.outer();
ClipperLib::Path polygonClipper;
for (auto vertex : outer) {
polygonClipper.push_back(ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
}
// Perform clipping.
// Clip transects to measurement area.
ClipperLib::Clipper clipper;
clipper.AddPath(polygonClipper, ClipperLib::ptClip, true);
clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
ClipperLib::PolyTree clippedTransecs;
clipper.Execute(ClipperLib::ctIntersection, clippedTransecs,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
// Subtract holes.
if (tiles.size() > 0) {
vector<ClipperLib::Path> processedTiles;
for (const auto &tile : tiles) {
ClipperLib::Path path;
for (const auto &v : tile.outer()) {
path.push_back(ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(v.get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(v.get<1>() * CLIPPER_SCALE)});
}
processedTiles.push_back(std::move(path));
}
clipper.Clear();
for (const auto &child : clippedTransecs.Childs) {
clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
}
clipper.AddPaths(processedTiles, ClipperLib::ptClip, true);
clippedTransecs.Clear();
clipper.Execute(ClipperLib::ctDifference, clippedTransecs,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
}
// Extract transects from PolyTree and convert them to BoostLineString
for (const auto &child : clippedTransecs.Childs) {
const auto &clipperTransect = child->Contour;
snake::FPoint v1{
static_cast<double>(clipperTransect[0].X) / CLIPPER_SCALE,
static_cast<double>(clipperTransect[0].Y) / CLIPPER_SCALE};
snake::FPoint v2{
static_cast<double>(clipperTransect[1].X) / CLIPPER_SCALE,
static_cast<double>(clipperTransect[1].Y) / CLIPPER_SCALE};
snake::FLineString transect{v1, v2};
if (bg::length(transect) >= minLength.value()) {
transects.push_back(transect);
}
}
if (transects.size() == 0) {
std::stringstream ss;
ss << "Not able to generatetransects. Parameter: minLength = "
<< minLength << std::endl;
qCDebug(LinearGeneratorLog)
<< "linearTransects(): " << ss.str().c_str();
return false;
}
qCDebug(LinearGeneratorLog)
<< "linearTransects(): time: "
<< std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - s1)
.count()
<< " ms";
return true;
}
}
return false;
}
} // namespace routing