HouseholderQR.h 13.7 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010 Vincent Lejeune
//
Don Gagne's avatar
Don Gagne committed
8 9 10
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
11 12 13 14

#ifndef EIGEN_QR_H
#define EIGEN_QR_H

Don Gagne's avatar
Don Gagne committed
15 16
namespace Eigen { 

LM's avatar
LM committed
17 18 19 20 21 22 23
/** \ingroup QR_Module
  *
  *
  * \class HouseholderQR
  *
  * \brief Householder QR decomposition of a matrix
  *
24
  * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
LM's avatar
LM committed
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
  *
  * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
  * such that 
  * \f[
  *  \mathbf{A} = \mathbf{Q} \, \mathbf{R}
  * \f]
  * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
  * The result is stored in a compact way compatible with LAPACK.
  *
  * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
  * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
  *
  * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
  * FullPivHouseholderQR or ColPivHouseholderQR.
  *
40 41
  * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
  *
LM's avatar
LM committed
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  * \sa MatrixBase::householderQr()
  */
template<typename _MatrixType> class HouseholderQR
{
  public:

    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
57 58
    // FIXME should be int
    typedef typename MatrixType::StorageIndex StorageIndex;
LM's avatar
LM committed
59 60 61
    typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
    typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
    typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
Don Gagne's avatar
Don Gagne committed
62
    typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
LM's avatar
LM committed
63 64

    /**
Don Gagne's avatar
Don Gagne committed
65 66 67 68 69
      * \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via HouseholderQR::compute(const MatrixType&).
      */
LM's avatar
LM committed
70 71 72 73 74 75 76 77 78 79
    HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa HouseholderQR()
      */
    HouseholderQR(Index rows, Index cols)
      : m_qr(rows, cols),
Don Gagne's avatar
Don Gagne committed
80
        m_hCoeffs((std::min)(rows,cols)),
LM's avatar
LM committed
81 82 83
        m_temp(cols),
        m_isInitialized(false) {}

Don Gagne's avatar
Don Gagne committed
84 85 86 87 88 89 90 91 92 93 94 95
    /** \brief Constructs a QR factorization from a given matrix
      *
      * This constructor computes the QR factorization of the matrix \a matrix by calling
      * the method compute(). It is a short cut for:
      * 
      * \code
      * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
      * qr.compute(matrix);
      * \endcode
      * 
      * \sa compute()
      */
96 97
    template<typename InputType>
    explicit HouseholderQR(const EigenBase<InputType>& matrix)
LM's avatar
LM committed
98
      : m_qr(matrix.rows(), matrix.cols()),
Don Gagne's avatar
Don Gagne committed
99
        m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
LM's avatar
LM committed
100 101 102
        m_temp(matrix.cols()),
        m_isInitialized(false)
    {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
      compute(matrix.derived());
    }


    /** \brief Constructs a QR factorization from a given matrix
      *
      * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when
      * \c MatrixType is a Eigen::Ref.
      *
      * \sa HouseholderQR(const EigenBase&)
      */
    template<typename InputType>
    explicit HouseholderQR(EigenBase<InputType>& matrix)
      : m_qr(matrix.derived()),
        m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
        m_temp(matrix.cols()),
        m_isInitialized(false)
    {
      computeInPlace();
LM's avatar
LM committed
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    }

    /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
      * *this is the QR decomposition, if any exists.
      *
      * \param b the right-hand-side of the equation to solve.
      *
      * \returns a solution.
      *
      * \note_about_checking_solutions
      *
      * \note_about_arbitrary_choice_of_solution
      *
      * Example: \include HouseholderQR_solve.cpp
      * Output: \verbinclude HouseholderQR_solve.out
      */
    template<typename Rhs>
139
    inline const Solve<HouseholderQR, Rhs>
LM's avatar
LM committed
140 141 142
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
143
      return Solve<HouseholderQR, Rhs>(*this, b.derived());
LM's avatar
LM committed
144 145
    }

Don Gagne's avatar
Don Gagne committed
146 147 148 149 150 151 152 153
    /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
      *
      * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
      * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
      *
      * Example: \include HouseholderQR_householderQ.cpp
      * Output: \verbinclude HouseholderQR_householderQ.out
      */
LM's avatar
LM committed
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    HouseholderSequenceType householderQ() const
    {
      eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
      return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
    }

    /** \returns a reference to the matrix where the Householder QR decomposition is stored
      * in a LAPACK-compatible way.
      */
    const MatrixType& matrixQR() const
    {
        eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
        return m_qr;
    }

169 170 171 172 173 174
    template<typename InputType>
    HouseholderQR& compute(const EigenBase<InputType>& matrix) {
      m_qr = matrix.derived();
      computeInPlace();
      return *this;
    }
LM's avatar
LM committed
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

    /** \returns the absolute value of the determinant of the matrix of which
      * *this is the QR decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the QR decomposition has already been computed.
      *
      * \note This is only for square matrices.
      *
      * \warning a determinant can be very big or small, so for matrices
      * of large enough dimension, there is a risk of overflow/underflow.
      * One way to work around that is to use logAbsDeterminant() instead.
      *
      * \sa logAbsDeterminant(), MatrixBase::determinant()
      */
    typename MatrixType::RealScalar absDeterminant() const;

    /** \returns the natural log of the absolute value of the determinant of the matrix of which
      * *this is the QR decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the QR decomposition has already been computed.
      *
      * \note This is only for square matrices.
      *
      * \note This method is useful to work around the risk of overflow/underflow that's inherent
      * to determinant computation.
      *
      * \sa absDeterminant(), MatrixBase::determinant()
      */
    typename MatrixType::RealScalar logAbsDeterminant() const;

    inline Index rows() const { return m_qr.rows(); }
    inline Index cols() const { return m_qr.cols(); }
Don Gagne's avatar
Don Gagne committed
207 208 209 210 211
    
    /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
      * 
      * For advanced uses only.
      */
LM's avatar
LM committed
212
    const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
213 214 215 216 217 218
    
    #ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename RhsType, typename DstType>
    EIGEN_DEVICE_FUNC
    void _solve_impl(const RhsType &rhs, DstType &dst) const;
    #endif
LM's avatar
LM committed
219 220

  protected:
221 222 223 224 225
    
    static void check_template_parameters()
    {
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    }
226 227

    void computeInPlace();
228
    
LM's avatar
LM committed
229 230 231 232 233 234 235 236 237
    MatrixType m_qr;
    HCoeffsType m_hCoeffs;
    RowVectorType m_temp;
    bool m_isInitialized;
};

template<typename MatrixType>
typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
{
Don Gagne's avatar
Don Gagne committed
238
  using std::abs;
LM's avatar
LM committed
239 240
  eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
Don Gagne's avatar
Don Gagne committed
241
  return abs(m_qr.diagonal().prod());
LM's avatar
LM committed
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
}

template<typename MatrixType>
typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
{
  eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
  return m_qr.diagonal().cwiseAbs().array().log().sum();
}

namespace internal {

/** \internal */
template<typename MatrixQR, typename HCoeffs>
void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
{
  typedef typename MatrixQR::Scalar Scalar;
  typedef typename MatrixQR::RealScalar RealScalar;
  Index rows = mat.rows();
  Index cols = mat.cols();
Don Gagne's avatar
Don Gagne committed
262
  Index size = (std::min)(rows,cols);
LM's avatar
LM committed
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

  eigen_assert(hCoeffs.size() == size);

  typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
  TempType tempVector;
  if(tempData==0)
  {
    tempVector.resize(cols);
    tempData = tempVector.data();
  }

  for(Index k = 0; k < size; ++k)
  {
    Index remainingRows = rows - k;
    Index remainingCols = cols - k - 1;

    RealScalar beta;
    mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
    mat.coeffRef(k,k) = beta;

    // apply H to remaining part of m_qr from the left
    mat.bottomRightCorner(remainingRows, remainingCols)
        .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
  }
}

/** \internal */
290 291 292 293
template<typename MatrixQR, typename HCoeffs,
  typename MatrixQRScalar = typename MatrixQR::Scalar,
  bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
struct householder_qr_inplace_blocked
LM's avatar
LM committed
294
{
295
  // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h
296
  static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index maxBlockSize=32,
297
      typename MatrixQR::Scalar* tempData = 0)
LM's avatar
LM committed
298
  {
299 300
    typedef typename MatrixQR::Scalar Scalar;
    typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
LM's avatar
LM committed
301

302 303 304
    Index rows = mat.rows();
    Index cols = mat.cols();
    Index size = (std::min)(rows, cols);
LM's avatar
LM committed
305

306 307 308 309 310 311 312
    typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
    TempType tempVector;
    if(tempData==0)
    {
      tempVector.resize(cols);
      tempData = tempVector.data();
    }
LM's avatar
LM committed
313

314
    Index blockSize = (std::min)(maxBlockSize,size);
LM's avatar
LM committed
315

316 317
    Index k = 0;
    for (k = 0; k < size; k += blockSize)
LM's avatar
LM committed
318
    {
319
      Index bs = (std::min)(size-k,blockSize);  // actual size of the block
320 321
      Index tcols = cols - k - bs;              // trailing columns
      Index brows = rows-k;                     // rows of the block
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

      // partition the matrix:
      //        A00 | A01 | A02
      // mat  = A10 | A11 | A12
      //        A20 | A21 | A22
      // and performs the qr dec of [A11^T A12^T]^T
      // and update [A21^T A22^T]^T using level 3 operations.
      // Finally, the algorithm continue on A22

      BlockType A11_21 = mat.block(k,k,brows,bs);
      Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);

      householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);

      if(tcols)
      {
        BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
339
        apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment, false); // false == backward
340
      }
LM's avatar
LM committed
341 342
    }
  }
343
};
LM's avatar
LM committed
344

345
} // end namespace internal
LM's avatar
LM committed
346

347 348 349 350 351 352 353
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType>
template<typename RhsType, typename DstType>
void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
  const Index rank = (std::min)(rows(), cols());
  eigen_assert(rhs.rows() == rows());
LM's avatar
LM committed
354

355
  typename RhsType::PlainObject c(rhs);
LM's avatar
LM committed
356

357 358 359 360 361
  // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
  c.applyOnTheLeft(householderSequence(
    m_qr.leftCols(rank),
    m_hCoeffs.head(rank)).transpose()
  );
LM's avatar
LM committed
362

363 364 365
  m_qr.topLeftCorner(rank, rank)
      .template triangularView<Upper>()
      .solveInPlace(c.topRows(rank));
LM's avatar
LM committed
366

367 368 369 370
  dst.topRows(rank) = c.topRows(rank);
  dst.bottomRows(cols()-rank).setZero();
}
#endif
LM's avatar
LM committed
371

Don Gagne's avatar
Don Gagne committed
372 373 374 375 376 377
/** Performs the QR factorization of the given matrix \a matrix. The result of
  * the factorization is stored into \c *this, and a reference to \c *this
  * is returned.
  *
  * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
  */
LM's avatar
LM committed
378
template<typename MatrixType>
379
void HouseholderQR<MatrixType>::computeInPlace()
LM's avatar
LM committed
380
{
381 382
  check_template_parameters();
  
383 384
  Index rows = m_qr.rows();
  Index cols = m_qr.cols();
Don Gagne's avatar
Don Gagne committed
385
  Index size = (std::min)(rows,cols);
LM's avatar
LM committed
386 387 388 389 390

  m_hCoeffs.resize(size);

  m_temp.resize(cols);

391
  internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
LM's avatar
LM committed
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

  m_isInitialized = true;
}

/** \return the Householder QR decomposition of \c *this.
  *
  * \sa class HouseholderQR
  */
template<typename Derived>
const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::householderQr() const
{
  return HouseholderQR<PlainObject>(eval());
}

Don Gagne's avatar
Don Gagne committed
407
} // end namespace Eigen
LM's avatar
LM committed
408 409

#endif // EIGEN_QR_H