qwt_scale_engine.cpp 22.1 KB
Newer Older
pixhawk's avatar
pixhawk committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
 * Qwt Widget Library
 * Copyright (C) 1997   Josef Wilgen
 * Copyright (C) 2002   Uwe Rathmann
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the Qwt License, Version 1.0
 *****************************************************************************/

#include "qwt_math.h"
#include "qwt_scale_map.h"
#include "qwt_scale_engine.h"

static const double _eps = 1.0e-6;

/*!
  \brief Compare 2 values, relative to an interval

  Values are "equal", when :
  \f$\cdot value2 - value1 <= abs(intervalSize * 10e^{-6})\f$

  \param value1 First value to compare
  \param value2 Second value to compare
  \param intervalSize interval size

  \return 0: if equal, -1: if value2 > value1, 1: if value1 > value2
*/
int QwtScaleArithmetic::compareEps(double value1, double value2, 
    double intervalSize) 
{
    const double eps = qwtAbs(_eps * intervalSize);

    if ( value2 - value1 > eps )
        return -1;

    if ( value1 - value2 > eps )
        return 1;

    return 0;
}

/*!
  Ceil a value, relative to an interval

  \param value Value to ceil
  \param intervalSize Interval size
 
  \sa floorEps
*/
double QwtScaleArithmetic::ceilEps(double value, 
    double intervalSize) 
{
    const double eps = _eps * intervalSize;

    value = (value - eps) / intervalSize;
    return ceil(value) * intervalSize;
}

/*!
  Floor a value, relative to an interval

  \param value Value to floor
  \param intervalSize Interval size
 
  \sa floorEps
*/
double QwtScaleArithmetic::floorEps(double value, double intervalSize) 
{
    const double eps = _eps * intervalSize;

    value = (value + eps) / intervalSize;
    return floor(value) * intervalSize;
}

/*
  \brief Divide an interval into steps

  \f$stepSize = (intervalSize - intervalSize * 10e^{-6}) / numSteps\f$

  \param intervalSize Interval size
  \param numSteps Number of steps
  \return Step size
*/
double QwtScaleArithmetic::divideEps(double intervalSize, double numSteps) 
{
    if ( numSteps == 0.0 || intervalSize == 0.0 )
        return 0.0;

    return (intervalSize - (_eps * intervalSize)) / numSteps;
} 

/*!
  Find the smallest value out of {1,2,5}*10^n with an integer number n
  which is greater than or equal to x
  
  \param x Input value
*/
double QwtScaleArithmetic::ceil125(double x) 
{
    if (x == 0.0) 
        return 0.0;

    const double sign = (x > 0) ? 1.0 : -1.0;
    const double lx = log10(fabs(x));
    const double p10 = floor(lx);
    
    double fr = pow(10.0, lx - p10);
    if (fr <=1.0)
       fr = 1.0; 
    else if (fr <= 2.0)
       fr = 2.0;
    else if (fr <= 5.0) 
       fr = 5.0;
    else
       fr = 10.0;

    return sign * fr * pow(10.0, p10);
}

/*!
  \brief Find the largest value out of {1,2,5}*10^n with an integer number n
  which is smaller than or equal to x

  \param x Input value
*/
double QwtScaleArithmetic::floor125(double x) 
{
    if (x == 0.0)
        return 0.0;

    double sign = (x > 0) ? 1.0 : -1.0;
    const double lx = log10(fabs(x));
    const double p10 = floor(lx);

    double fr = pow(10.0, lx - p10);
    if (fr >= 10.0)
       fr = 10.0;
    else if (fr >= 5.0)
       fr = 5.0;
    else if (fr >= 2.0)
       fr = 2.0;
    else
       fr = 1.0;

    return sign * fr * pow(10.0, p10);
}

class QwtScaleEngine::PrivateData
{
public:
    PrivateData():
        attributes(QwtScaleEngine::NoAttribute),
        loMargin(0.0),
        hiMargin(0.0),
        referenceValue(0.0)
    {
    }

    int attributes;       // scale attributes

    double loMargin;      // margins
    double hiMargin;

    double referenceValue; // reference value

};

//! Ctor
QwtScaleEngine::QwtScaleEngine()
{
    d_data = new PrivateData;
}


//! Dtor
QwtScaleEngine::~QwtScaleEngine ()
{
    delete d_data;
}

/*!
    \return the margin at the lower end of the scale
    The default margin is 0.

    \sa QwtScaleEngine::setMargins()
*/
double QwtScaleEngine::loMargin() const 
{ 
    return d_data->loMargin; 
}

/*!
    \return the margin at the upper end of the scale
    The default margin is 0.

    \sa QwtScaleEngine::setMargins()
*/
double QwtScaleEngine::hiMargin() const 
{ 
    return d_data->hiMargin; 
}

/*!
  \brief Specify margins at the scale's endpoints
  \param mlo minimum distance between the scale's lower boundary and the
             smallest enclosed value
  \param mhi minimum distance between the scale's upper boundary and the
             greatest enclosed value

  Margins can be used to leave a minimum amount of space between
  the enclosed intervals and the boundaries of the scale.

  \warning
  \li QwtLog10ScaleEngine measures the margins in decades.

  \sa QwtScaleEngine::hiMargin, QwtScaleEngine::loMargin
*/

void QwtScaleEngine::setMargins(double mlo, double mhi)
{
    d_data->loMargin = qwtMax(mlo,0.0);
    d_data->hiMargin = qwtMax(mhi,0.0);
}

/*!
  Calculate a step size for an interval size

  \param intervalSize Interval size
  \param numSteps Number of steps
  
  \return Step size
*/
double QwtScaleEngine::divideInterval(
    double intervalSize, int numSteps) const
{
    if ( numSteps <= 0 )
        return 0.0;

    double v = QwtScaleArithmetic::divideEps(intervalSize, numSteps);
    return QwtScaleArithmetic::ceil125(v);
}

/*!
  Check if an interval "contains" a value

  \param interval Interval
  \param value Value

  \sa QwtScaleArithmetic::compareEps
*/
bool QwtScaleEngine::contains(
    const QwtDoubleInterval &interval, double value) const
{
    if (!interval.isValid() )
        return false;
    
    if ( QwtScaleArithmetic::compareEps(value, 
        interval.minValue(), interval.width()) < 0 )
    {
        return false;
    }

    if ( QwtScaleArithmetic::compareEps(value, 
        interval.maxValue(), interval.width()) > 0 )
    {
        return false;
    }

    return true;
}

/*!
  Remove ticks from a list, that are not inside an interval

  \param ticks Tick list
  \param interval Interval

  \return Stripped tick list
*/
QwtValueList QwtScaleEngine::strip( 
    const QwtValueList& ticks, 
    const QwtDoubleInterval &interval) const
{
    if ( !interval.isValid() || ticks.count() == 0 )
        return QwtValueList();

    if ( contains(interval, ticks.first())
        && contains(interval, ticks.last()) )
    {
        return ticks;
    }

    QwtValueList strippedTicks;
    for ( int i = 0; i < (int)ticks.count(); i++ )
    {
        if ( contains(interval, ticks[i]) )
            strippedTicks += ticks[i];
    }
    return strippedTicks;
}

/*!
  \brief Build an interval for a value

  In case of v == 0.0 the interval is [-0.5, 0.5],
  otherwide it is [0.5 * v, 1.5 * v]
*/

QwtDoubleInterval QwtScaleEngine::buildInterval(double v) const
{
    const double delta = (v == 0.0) ? 0.5 : qwtAbs(0.5 * v);
    return QwtDoubleInterval(v - delta, v + delta);
}

/*!
  Change a scale attribute

  \param attribute Attribute to change
  \param on On/Off

  The behaviour of the scale engine can be changed
  with the following attributes:
  <dl>
  <dt>QwtScaleEngine::IncludeReference
  <dd>Build a scale which includes the reference value.
  <dt>QwtScaleEngine::Symmetric
  <dd>Build a scale which is symmetric to the reference value.
  <dt>QwtScaleEngine::Floating
  <dd>The endpoints of the scale are supposed to be equal the outmost included
  values plus the specified margins (see setMargins()). If this attribute is
  *not* set, the endpoints of the scale will be integer multiples of the step
  size.
  <dt>QwtScaleEngine::Inverted
  <dd>Turn the scale upside down.
  </dl>

  \sa QwtScaleEngine::testAttribute()
*/
void QwtScaleEngine::setAttribute(Attribute attribute, bool on)
{
    if (on)
       d_data->attributes |= attribute;
    else
       d_data->attributes &= (~attribute);
}

/*!
  Check if a attribute is set.

  \param attribute Attribute to be tested
  \sa QwtScaleEngine::setAttribute() for a description of the possible options.
*/
bool QwtScaleEngine::testAttribute(Attribute attribute) const
{
    return bool(d_data->attributes & attribute);
}

/*!
  Change the scale attribute

  \param attributes Set scale attributes
  \sa QwtScaleEngine::attributes()
*/
void QwtScaleEngine::setAttributes(int attributes)
{
    d_data->attributes = attributes;
}

/*!
  Return the scale attributes
*/
int QwtScaleEngine::attributes() const
{
    return d_data->attributes;
}

/*!
  \brief Specify a reference point
  \param r new reference value

  The reference point is needed if options IncludeRef or
  Symmetric are active. Its default value is 0.0.
*/
void QwtScaleEngine::setReference(double r)
{
    d_data->referenceValue = r;
}

/*!
 \return the reference value
 \sa QwtScaleEngine::setReference(), QwtScaleEngine::setAttribute()
*/
double QwtScaleEngine::reference() const 
{ 
    return d_data->referenceValue; 
}

/*!
  Return a transformation, for linear scales
*/
QwtScaleTransformation *QwtLinearScaleEngine::transformation() const
{
    return new QwtScaleTransformation(QwtScaleTransformation::Linear);
}

/*!
    Align and divide an interval 

   \param maxNumSteps Max. number of steps
   \param x1 First limit of the interval (In/Out)
   \param x2 Second limit of the interval (In/Out)
   \param stepSize Step size (Out)

   \sa QwtLinearScaleEngine::setAttribute
*/
void QwtLinearScaleEngine::autoScale(int maxNumSteps, 
    double &x1, double &x2, double &stepSize) const
{
    QwtDoubleInterval interval(x1, x2);
    interval = interval.normalized();

    interval.setMinValue(interval.minValue() - loMargin());
    interval.setMaxValue(interval.maxValue() + hiMargin());

    if (testAttribute(QwtScaleEngine::Symmetric))
        interval = interval.symmetrize(reference());
 
    if (testAttribute(QwtScaleEngine::IncludeReference))
        interval = interval.extend(reference());

    if (interval.width() == 0.0)
        interval = buildInterval(interval.minValue());

    stepSize = divideInterval(interval.width(), qwtMax(maxNumSteps, 1));

    if ( !testAttribute(QwtScaleEngine::Floating) )
        interval = align(interval, stepSize);

    x1 = interval.minValue();
    x2 = interval.maxValue();

    if (testAttribute(QwtScaleEngine::Inverted))
    {
        qSwap(x1, x2);
        stepSize = -stepSize;
    }
}

/*!
   \brief Calculate a scale division

   \param x1 First interval limit 
   \param x2 Second interval limit 
   \param maxMajSteps Maximum for the number of major steps
   \param maxMinSteps Maximum number of minor steps
   \param stepSize Step size. If stepSize == 0, the scaleEngine
                   calculates one.

   \sa QwtScaleEngine::stepSize, QwtScaleEngine::subDivide
*/
QwtScaleDiv QwtLinearScaleEngine::divideScale(double x1, double x2,
    int maxMajSteps, int maxMinSteps, double stepSize) const
{
    QwtDoubleInterval interval = QwtDoubleInterval(x1, x2).normalized();
    if (interval.width() <= 0 )
        return QwtScaleDiv();

    stepSize = qwtAbs(stepSize);
    if ( stepSize == 0.0 )
    {
        if ( maxMajSteps < 1 )
            maxMajSteps = 1;

        stepSize = divideInterval(interval.width(), maxMajSteps);
    }

    QwtScaleDiv scaleDiv;

    if ( stepSize != 0.0 )
    {
        QwtValueList ticks[QwtScaleDiv::NTickTypes];
        buildTicks(interval, stepSize, maxMinSteps, ticks);

        scaleDiv = QwtScaleDiv(interval, ticks);
    }

    if ( x1 > x2 )
        scaleDiv.invert();

    return scaleDiv;
}

void QwtLinearScaleEngine::buildTicks(
    const QwtDoubleInterval& interval, double stepSize, int maxMinSteps,
    QwtValueList ticks[QwtScaleDiv::NTickTypes]) const
{
    const QwtDoubleInterval boundingInterval =
        align(interval, stepSize);
    
    ticks[QwtScaleDiv::MajorTick] = 
        buildMajorTicks(boundingInterval, stepSize);

    if ( maxMinSteps > 0 )
    {
        buildMinorTicks(ticks[QwtScaleDiv::MajorTick], maxMinSteps, stepSize,
            ticks[QwtScaleDiv::MinorTick], ticks[QwtScaleDiv::MediumTick]);
    }
    
    for ( int i = 0; i < QwtScaleDiv::NTickTypes; i++ )
    {
        ticks[i] = strip(ticks[i], interval);

        // ticks very close to 0.0 are 
        // explicitely set to 0.0

        for ( int j = 0; j < (int)ticks[i].count(); j++ )
        {
            if ( QwtScaleArithmetic::compareEps(ticks[i][j], 0.0, stepSize) == 0 )
                ticks[i][j] = 0.0;
        }
    }
}

QwtValueList QwtLinearScaleEngine::buildMajorTicks(
    const QwtDoubleInterval &interval, double stepSize) const
{
    int numTicks = qRound(interval.width() / stepSize) + 1;
#if 1
    if ( numTicks > 10000 )
        numTicks = 10000;
#endif

    QwtValueList ticks;

    ticks += interval.minValue();
    for (int i = 1; i < numTicks - 1; i++)
        ticks += interval.minValue() + i * stepSize;
    ticks += interval.maxValue();

    return ticks;
}

void QwtLinearScaleEngine::buildMinorTicks(
    const QwtValueList& majorTicks,
    int maxMinSteps, double stepSize,
    QwtValueList &minorTicks, 
    QwtValueList &mediumTicks) const
{   
    double minStep = divideInterval(stepSize, maxMinSteps);
    if (minStep == 0.0)  
        return; 
        
    // # ticks per interval
    int numTicks = (int)::ceil(qwtAbs(stepSize / minStep)) - 1;
    
    // Do the minor steps fit into the interval?
    if ( QwtScaleArithmetic::compareEps((numTicks +  1) * qwtAbs(minStep), 
        qwtAbs(stepSize), stepSize) > 0)
    {   
        numTicks = 1;
        minStep = stepSize * 0.5;
    }

    int medIndex = -1;
    if ( numTicks % 2 )
        medIndex = numTicks / 2;

    // calculate minor ticks

    for (int i = 0; i < (int)majorTicks.count(); i++)
    {
        double val = majorTicks[i];
        for (int k = 0; k < numTicks; k++)
        {
            val += minStep;

            double alignedValue = val;
            if (QwtScaleArithmetic::compareEps(val, 0.0, stepSize) == 0) 
                alignedValue = 0.0;

            if ( k == medIndex )
                mediumTicks += alignedValue;
            else
                minorTicks += alignedValue;
        }
    }
}

/*!
  \brief Align an interval to a step size

  The limits of an interval are aligned that both are integer
  multiples of the step size.

  \param interval Interval
  \param stepSize Step size

  \return Aligned interval
*/
QwtDoubleInterval QwtLinearScaleEngine::align(
    const QwtDoubleInterval &interval, double stepSize) const
{
    const double x1 = 
        QwtScaleArithmetic::floorEps(interval.minValue(), stepSize);
    const double x2 = 
        QwtScaleArithmetic::ceilEps(interval.maxValue(), stepSize);

    return QwtDoubleInterval(x1, x2);
}

/*!
  Return a transformation, for logarithmic (base 10) scales
*/
QwtScaleTransformation *QwtLog10ScaleEngine::transformation() const
{
    return new QwtScaleTransformation(QwtScaleTransformation::Log10);
}

/*!
    Align and divide an interval

   \param maxNumSteps Max. number of steps
   \param x1 First limit of the interval (In/Out)
   \param x2 Second limit of the interval (In/Out)
   \param stepSize Step size (Out)

   \sa QwtScaleEngine::setAttribute
*/
void QwtLog10ScaleEngine::autoScale(int maxNumSteps, 
    double &x1, double &x2, double &stepSize) const
{
    if ( x1 > x2 )
        qSwap(x1, x2);

    QwtDoubleInterval interval(x1 / pow(10.0, loMargin()), 
        x2 * pow(10.0, hiMargin()) );

    double logRef = 1.0;
    if (reference() > LOG_MIN / 2)
        logRef = qwtMin(reference(), LOG_MAX / 2);

    if (testAttribute(QwtScaleEngine::Symmetric))
    {
        const double delta = qwtMax(interval.maxValue() / logRef,  
            logRef / interval.minValue());
        interval.setInterval(logRef / delta, logRef * delta);
    }

    if (testAttribute(QwtScaleEngine::IncludeReference))
        interval = interval.extend(logRef);

    interval = interval.limited(LOG_MIN, LOG_MAX);

    if (interval.width() == 0.0)
        interval = buildInterval(interval.minValue());

    stepSize = divideInterval(log10(interval).width(), qwtMax(maxNumSteps, 1));
    if ( stepSize < 1.0 )
        stepSize = 1.0;

    if (!testAttribute(QwtScaleEngine::Floating))
        interval = align(interval, stepSize);

    x1 = interval.minValue();
    x2 = interval.maxValue();

    if (testAttribute(QwtScaleEngine::Inverted))
    {
        qSwap(x1, x2);
        stepSize = -stepSize;
    }
}

/*!
   \brief Calculate a scale division

   \param x1 First interval limit 
   \param x2 Second interval limit 
   \param maxMajSteps Maximum for the number of major steps
   \param maxMinSteps Maximum number of minor steps
   \param stepSize Step size. If stepSize == 0, the scaleEngine
                   calculates one.

   \sa QwtScaleEngine::stepSize, QwtLog10ScaleEngine::subDivide
*/
QwtScaleDiv QwtLog10ScaleEngine::divideScale(double x1, double x2,
    int maxMajSteps, int maxMinSteps, double stepSize) const
{
    QwtDoubleInterval interval = QwtDoubleInterval(x1, x2).normalized();
    interval = interval.limited(LOG_MIN, LOG_MAX);

    if (interval.width() <= 0 )
        return QwtScaleDiv();

    if (interval.maxValue() / interval.minValue() < 10.0)
    {
        // scale width is less than one decade -> build linear scale
    
        QwtLinearScaleEngine linearScaler;
        linearScaler.setAttributes(attributes());
        linearScaler.setReference(reference());
        linearScaler.setMargins(loMargin(), hiMargin());

        return linearScaler.divideScale(x1, x2, 
            maxMajSteps, maxMinSteps, stepSize);
    }

    stepSize = qwtAbs(stepSize);
    if ( stepSize == 0.0 )
    {
        if ( maxMajSteps < 1 )
            maxMajSteps = 1;

        stepSize = divideInterval(log10(interval).width(), maxMajSteps);
        if ( stepSize < 1.0 )
            stepSize = 1.0; // major step must be >= 1 decade
    }

    QwtScaleDiv scaleDiv;
    if ( stepSize != 0.0 )
    {
        QwtValueList ticks[QwtScaleDiv::NTickTypes];
        buildTicks(interval, stepSize, maxMinSteps, ticks);

        scaleDiv = QwtScaleDiv(interval, ticks);
    }

    if ( x1 > x2 )
        scaleDiv.invert();

    return scaleDiv;
}

void QwtLog10ScaleEngine::buildTicks(
    const QwtDoubleInterval& interval, double stepSize, int maxMinSteps,
    QwtValueList ticks[QwtScaleDiv::NTickTypes]) const
{
    const QwtDoubleInterval boundingInterval =
        align(interval, stepSize);
    
    ticks[QwtScaleDiv::MajorTick] = 
        buildMajorTicks(boundingInterval, stepSize);

    if ( maxMinSteps > 0 )
    {
        ticks[QwtScaleDiv::MinorTick] = buildMinorTicks(
            ticks[QwtScaleDiv::MajorTick], maxMinSteps, stepSize);
    }
    
    for ( int i = 0; i < QwtScaleDiv::NTickTypes; i++ )
        ticks[i] = strip(ticks[i], interval);
}

QwtValueList QwtLog10ScaleEngine::buildMajorTicks(
    const QwtDoubleInterval &interval, double stepSize) const
{
    double width = log10(interval).width();

    int numTicks = qRound(width / stepSize) + 1;
    if ( numTicks > 10000 )
        numTicks = 10000;

    const double lxmin = log(interval.minValue());
    const double lxmax = log(interval.maxValue());
    const double lstep = (lxmax - lxmin) / double(numTicks - 1);

    QwtValueList ticks;

    ticks += interval.minValue();

    for (int i = 1; i < numTicks; i++)
       ticks += exp(lxmin + double(i) * lstep);

    ticks += interval.maxValue();

    return ticks;
}

QwtValueList QwtLog10ScaleEngine::buildMinorTicks(
    const QwtValueList &majorTicks, 
    int maxMinSteps, double stepSize) const
{   
    if (stepSize < 1.1)            // major step width is one decade
    {
        if ( maxMinSteps < 1 )
            return QwtValueList();
            
        int k0, kstep, kmax;
        
        if (maxMinSteps >= 8)
        {
            k0 = 2;
            kmax = 9;
            kstep = 1;
        }   
        else if (maxMinSteps >= 4)
        {
            k0 = 2;
            kmax = 8;
            kstep = 2;
        }   
        else if (maxMinSteps >= 2)
        {
            k0 = 2;
            kmax = 5;
            kstep = 3;
        }
        else
        {
            k0 = 5;
            kmax = 5;
            kstep = 1;
        }

        QwtValueList minorTicks;

        for (int i = 0; i < (int)majorTicks.count(); i++)
        {
            const double v = majorTicks[i];
            for (int k = k0; k<= kmax; k+=kstep)
                minorTicks += v * double(k);
        }

        return minorTicks;
    }
    else  // major step > one decade
    {
        double minStep = divideInterval(stepSize, maxMinSteps);
        if ( minStep == 0.0 )
            return QwtValueList();

        if ( minStep < 1.0 )
            minStep = 1.0;

        // # subticks per interval
        int nMin = qRound(stepSize / minStep) - 1;

        // Do the minor steps fit into the interval?

        if ( QwtScaleArithmetic::compareEps((nMin +  1) * minStep, 
            qwtAbs(stepSize), stepSize) > 0)
        {
            nMin = 0;
        }

        if (nMin < 1)
            return QwtValueList();      // no subticks

        // substep factor = 10^substeps
        const double minFactor = qwtMax(pow(10.0, minStep), 10.0);

        QwtValueList minorTicks;
        for (int i = 0; i < (int)majorTicks.count(); i++)
        {
            double val = majorTicks[i];
            for (int k=0; k< nMin; k++)
            {
                val *= minFactor;
                minorTicks += val;
            }
        }
        return minorTicks;
    }
}

/*!
  \brief Align an interval to a step size

  The limits of an interval are aligned that both are integer
  multiples of the step size.

  \param interval Interval
  \param stepSize Step size

  \return Aligned interval
*/
QwtDoubleInterval QwtLog10ScaleEngine::align(
    const QwtDoubleInterval &interval, double stepSize) const
{
    const QwtDoubleInterval intv = log10(interval);

    const double x1 = QwtScaleArithmetic::floorEps(intv.minValue(), stepSize);
    const double x2 = QwtScaleArithmetic::ceilEps(intv.maxValue(), stepSize);

    return pow10(QwtDoubleInterval(x1, x2));
}

/*!
  Return the interval [log10(interval.minValue(), log10(interval.maxValue]
*/

QwtDoubleInterval QwtLog10ScaleEngine::log10(
    const QwtDoubleInterval &interval) const
{
    return QwtDoubleInterval(::log10(interval.minValue()),
            ::log10(interval.maxValue()));
}

/*!
  Return the interval [pow10(interval.minValue(), pow10(interval.maxValue]
*/
QwtDoubleInterval QwtLog10ScaleEngine::pow10(
    const QwtDoubleInterval &interval) const
{
    return QwtDoubleInterval(pow(10.0, interval.minValue()),
            pow(10.0, interval.maxValue()));
}