CircularGenerator.cpp 10.3 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
#include "CircularGenerator.h"

#include "QGCLoggingCategory.h"

QGC_LOGGING_CATEGORY(CircularGeneratorLog, "CircularGeneratorLog")

namespace routing {

bool circularTransects(const snake::FPolygon &polygon,
                       const std::vector<snake::FPolygon> &tiles,
                       snake::Length deltaR, snake::Angle deltaAlpha,
                       snake::Length minLength, snake::Transects &transects);

CircularGenerator::CircularGenerator() : GeneratorBase() {}

CircularGenerator::CircularGenerator(std::shared_ptr<GeneratorData> par,
                                     QObject *parent)
    : GeneratorBase(parent) {
  if (qobject_cast<StandardData *>(par.get()) != nullptr) {
    data_ = data;
  } else {
    qCWarning(CircularGeneratorLog)
        << "CircularGenerator(): CircularGenerator accepts only StandartData.";
  }
}

QString CircularGenerator::editorQML() {
  return QStringLiteral("CircularGeneratorEditor.qml");
}

QString CircularGenerator::mapVisualQML() {
  return QStringLiteral("CircularGeneratorMapVisual.qml");
}

QString CircularGenerator::name() {
  return QStringLiteral("Circular Generator");
}

QString CircularGenerator::abbreviation() { return QStringLiteral("C. Gen."); }

GeneratorBase::Generator CircularGenerator::get() {}

bool CircularGenerator::setData(std::shared_ptr<GeneratorData> data) {
  if (qobject_cast<StandardData *>(par.get()) != nullptr) {
    data_ = data;
  } else {
    qCWarning(CircularGeneratorLog)
        << "setData(): CircularGenerator accepts only StandartData.";
  }
}

std::shared_ptr<GeneratorData> CircularGenerator::data() { return data_; }

bool circularTransects(const snake::FPolygon &polygon,
                       const std::vector<snake::FPolygon> &tiles,
                       snake::Length deltaR, snake::Angle deltaAlpha,
                       snake::Length minLength, snake::Transects &transects) {
  auto s1 = std::chrono::high_resolution_clock::now();

  // Check preconitions
  if (polygon.outer().size() >= 3) {
    using namespace boost::units;
    // Convert geo polygon to ENU polygon.
    snake::FPoint origin{0, 0};
    std::string error;
    // Check validity.
    if (!bg::is_valid(polygon, error)) {
      qCWarning(CircularSurveyLog) << "circularTransects(): "
                                      "invalid polygon.";
      qCWarning(CircularSurveyLog) << error.c_str();
      std::stringstream ss;
      ss << bg::wkt(polygon);
      qCWarning(CircularSurveyLog) << ss.str().c_str();
    } else {
      // Calculate polygon distances and angles.
      std::vector<snake::Length> distances;
      distances.reserve(polygon.outer().size());
      std::vector<snake::Angle> angles;
      angles.reserve(polygon.outer().size());
      //#ifdef DEBUG_CIRCULAR_SURVEY
      //      qCWarning(CircularSurveyLog) << "circularTransects():";
      //#endif
      for (const auto &p : polygon.outer()) {
        snake::Length distance = bg::distance(origin, p) * si::meter;
        distances.push_back(distance);
        snake::Angle alpha = (std::atan2(p.get<1>(), p.get<0>())) * si::radian;
        alpha = alpha < 0 * si::radian ? alpha + 2 * M_PI * si::radian : alpha;
        angles.push_back(alpha);
        //#ifdef DEBUG_CIRCULAR_SURVEY
        //        qCWarning(CircularSurveyLog) << "distances, angles,
        //        coordinates:"; qCWarning(CircularSurveyLog) <<
        //        to_string(distance).c_str(); qCWarning(CircularSurveyLog) <<
        //        to_string(snake::Degree(alpha)).c_str();
        //        qCWarning(CircularSurveyLog) << "x = " << p.get<0>() << "y = "
        //        << p.get<1>();
        //#endif
      }

      auto rMin = deltaR; // minimal circle radius
      snake::Angle alpha1(0 * degree::degree);
      snake::Angle alpha2(360 * degree::degree);
      // Determine r_min by successive approximation
      if (!bg::within(origin, polygon.outer())) {
        rMin = bg::distance(origin, polygon) * si::meter;
      }

      auto rMax = (*std::max_element(distances.begin(),
                                     distances.end())); // maximal circle radius

      // Scale parameters and coordinates.
      const auto rMinScaled =
          ClipperLib::cInt(std::round(rMin.value() * CLIPPER_SCALE));
      const auto deltaRScaled =
          ClipperLib::cInt(std::round(deltaR.value() * CLIPPER_SCALE));
      auto originScaled =
          ClipperLib::IntPoint{ClipperLib::cInt(std::round(origin.get<0>())),
                               ClipperLib::cInt(std::round(origin.get<1>()))};

      // Generate circle sectors.
      auto rScaled = rMinScaled;
      const auto nTran = long(std::ceil(((rMax - rMin) / deltaR).value()));
      vector<ClipperLib::Path> sectors(nTran, ClipperLib::Path());
      const auto nSectors =
          long(std::round(((alpha2 - alpha1) / deltaAlpha).value()));
      //#ifdef DEBUG_CIRCULAR_SURVEY
      //      qCWarning(CircularSurveyLog) << "circularTransects(): sector
      //      parameres:"; qCWarning(CircularSurveyLog) << "alpha1: " <<
      //      to_string(snake::Degree(alpha1)).c_str();
      //      qCWarning(CircularSurveyLog) << "alpha2:
      //      "
      //      << to_string(snake::Degree(alpha2)).c_str();
      //      qCWarning(CircularSurveyLog) << "n: "
      //      << to_string((alpha2 - alpha1) / deltaAlpha).c_str();
      //      qCWarning(CircularSurveyLog)
      //      << "nSectors: " << nSectors; qCWarning(CircularSurveyLog) <<
      //      "rMin: " << to_string(rMin).c_str(); qCWarning(CircularSurveyLog)
      //      << "rMax: " << to_string(rMax).c_str();
      //      qCWarning(CircularSurveyLog) << "nTran: " << nTran;
      //#endif
      using ClipperCircle =
          GenericCircle<ClipperLib::cInt, ClipperLib::IntPoint>;
      for (auto &sector : sectors) {
        ClipperCircle circle(rScaled, originScaled);
        approximate(circle, nSectors, sector);
        rScaled += deltaRScaled;
      }
      // Clip sectors to polygonENU.
      ClipperLib::Path polygonClipper;
      snake::FPolygon shrinked;
      snake::offsetPolygon(polygon, shrinked, -0.3);
      auto &outer = shrinked.outer();
      polygonClipper.reserve(outer.size());
      for (auto it = outer.begin(); it < outer.end() - 1; ++it) {
        auto x = ClipperLib::cInt(std::round(it->get<0>() * CLIPPER_SCALE));
        auto y = ClipperLib::cInt(std::round(it->get<1>() * CLIPPER_SCALE));
        polygonClipper.push_back(ClipperLib::IntPoint{x, y});
      }
      ClipperLib::Clipper clipper;
      clipper.AddPath(polygonClipper, ClipperLib::ptClip, true);
      clipper.AddPaths(sectors, ClipperLib::ptSubject, false);
      ClipperLib::PolyTree transectsClipper;
      clipper.Execute(ClipperLib::ctIntersection, transectsClipper,
                      ClipperLib::pftNonZero, ClipperLib::pftNonZero);

      // Subtract holes.
      if (tiles.size() > 0) {
        vector<ClipperLib::Path> processedTiles;
        for (const auto &tile : tiles) {
          ClipperLib::Path path;
          for (const auto &v : tile.outer()) {
            path.push_back(ClipperLib::IntPoint{
                static_cast<ClipperLib::cInt>(v.get<0>() * CLIPPER_SCALE),
                static_cast<ClipperLib::cInt>(v.get<1>() * CLIPPER_SCALE)});
          }
          processedTiles.push_back(std::move(path));
        }

        clipper.Clear();
        for (const auto &child : transectsClipper.Childs) {
          clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
        }
        clipper.AddPaths(processedTiles, ClipperLib::ptClip, true);
        transectsClipper.Clear();
        clipper.Execute(ClipperLib::ctDifference, transectsClipper,
                        ClipperLib::pftNonZero, ClipperLib::pftNonZero);
      }

      // Extract transects from  PolyTree and convert them to
      // BoostLineString
      for (const auto &child : transectsClipper.Childs) {
        snake::FLineString transect;
        transect.reserve(child->Contour.size());
        for (const auto &vertex : child->Contour) {
          auto x = static_cast<double>(vertex.X) / CLIPPER_SCALE;
          auto y = static_cast<double>(vertex.Y) / CLIPPER_SCALE;
          transect.push_back(snake::FPoint(x, y));
        }
        transects.push_back(transect);
      }

      // Join sectors which where slit due to clipping.
      const double th = 0.01;
      for (auto ito = transects.begin(); ito < transects.end(); ++ito) {
        for (auto iti = ito + 1; iti < transects.end(); ++iti) {
          auto dist1 = bg::distance(ito->front(), iti->front());
          if (dist1 < th) {
            snake::FLineString temp;
            for (auto it = iti->end() - 1; it >= iti->begin(); --it) {
              temp.push_back(*it);
            }
            temp.insert(temp.end(), ito->begin(), ito->end());
            *ito = temp;
            transects.erase(iti);
            break;
          }
          auto dist2 = bg::distance(ito->front(), iti->back());
          if (dist2 < th) {
            snake::FLineString temp;
            temp.insert(temp.end(), iti->begin(), iti->end());
            temp.insert(temp.end(), ito->begin(), ito->end());
            *ito = temp;
            transects.erase(iti);
            break;
          }
          auto dist3 = bg::distance(ito->back(), iti->front());
          if (dist3 < th) {
            snake::FLineString temp;
            temp.insert(temp.end(), ito->begin(), ito->end());
            temp.insert(temp.end(), iti->begin(), iti->end());
            *ito = temp;
            transects.erase(iti);
            break;
          }
          auto dist4 = bg::distance(ito->back(), iti->back());
          if (dist4 < th) {
            snake::FLineString temp;
            temp.insert(temp.end(), ito->begin(), ito->end());
            for (auto it = iti->end() - 1; it >= iti->begin(); --it) {
              temp.push_back(*it);
            }
            *ito = temp;
            transects.erase(iti);
            break;
          }
        }
      }

      // Remove short transects
      for (auto it = transects.begin(); it < transects.end();) {
        if (bg::length(*it) < minLength.value()) {
          it = transects.erase(it);
        } else {
          ++it;
        }
      }

      qCWarning(CircularSurveyLog)
          << "circularTransects(): transect gen. time: "
          << std::chrono::duration_cast<std::chrono::milliseconds>(
                 std::chrono::high_resolution_clock::now() - s1)
                 .count()
          << " ms";
      return true;
    }
  }
  return false;
}

} // namespace routing