intervalarith.h 32.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*                                                                           */
/*                  This file is part of the program and library             */
/*         SCIP --- Solving Constraint Integer Programs                      */
/*                                                                           */
/*    Copyright (C) 2002-2020 Konrad-Zuse-Zentrum                            */
/*                            fuer Informationstechnik Berlin                */
/*                                                                           */
/*  SCIP is distributed under the terms of the ZIB Academic License.         */
/*                                                                           */
/*  You should have received a copy of the ZIB Academic License              */
/*  along with SCIP; see the file COPYING. If not visit scipopt.org.         */
/*                                                                           */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/**@file   scip/intervalarith.h
 * @ingroup INTERNALAPI
 * @brief  interval arithmetics for provable bounds
 * @author Tobias Achterberg
 * @author Stefan Vigerske
 * @author Kati Wolter
 */

/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/

#ifndef __SCIP_INTERVALARITH_H__
#define __SCIP_INTERVALARITH_H__


#include "scip/def.h"

#ifdef __cplusplus
extern "C" {
#endif

/** interval given by infimum and supremum */
struct SCIP_Interval
{
   SCIP_Real             inf;                /**< infimum (lower bound) of interval */
   SCIP_Real             sup;                /**< supremum (upper bound) of interval */
};
typedef struct SCIP_Interval SCIP_INTERVAL;

/** rounding mode of floating point operations (upwards, downwards, nearest, ...)
 * exact values depend on machine and compiler, so we define a corresponding enum in the header file */
typedef int SCIP_ROUNDMODE;

/*
 * Interval arithmetic operations
 */

/** returns whether rounding mode control is available */
SCIP_EXPORT
SCIP_Bool SCIPintervalHasRoundingControl(
   void
   );

/** sets rounding mode of floating point operations */
SCIP_EXPORT
void SCIPintervalSetRoundingMode(
   SCIP_ROUNDMODE        roundmode           /**< rounding mode to activate */
   );

/** gets current rounding mode of floating point operations */
SCIP_EXPORT
SCIP_ROUNDMODE SCIPintervalGetRoundingMode(
   void
   );

/** sets rounding mode of floating point operations to downwards rounding */
SCIP_EXPORT
void SCIPintervalSetRoundingModeDownwards(
   void
   );

/** sets rounding mode of floating point operations to upwards rounding */
SCIP_EXPORT
void SCIPintervalSetRoundingModeUpwards(
   void
   );

/** sets rounding mode of floating point operations to nearest rounding */
SCIP_EXPORT
void SCIPintervalSetRoundingModeToNearest(
   void
   );

/** sets rounding mode of floating point operations to towards zero rounding */
SCIP_EXPORT
void SCIPintervalSetRoundingModeTowardsZero(
   void
   );

/** negates a number in a way that the compiler does not optimize it away */
SCIP_EXPORT
SCIP_Real SCIPintervalNegateReal(
   SCIP_Real             x                   /**< number to negate */
   );

/** returns infimum of interval */
SCIP_EXPORT
SCIP_Real SCIPintervalGetInf(
   SCIP_INTERVAL         interval            /**< interval */
   );

/** returns supremum of interval */
SCIP_EXPORT
SCIP_Real SCIPintervalGetSup(
   SCIP_INTERVAL         interval            /**< interval */
   );

/** stores given value as interval */
SCIP_EXPORT
void SCIPintervalSet(
   SCIP_INTERVAL*        resultant,          /**< interval to store value into */
   SCIP_Real             value               /**< value to store */
   );

/** stores given infimum and supremum as interval */
SCIP_EXPORT
void SCIPintervalSetBounds(
   SCIP_INTERVAL*        resultant,          /**< interval to store value into */
   SCIP_Real             inf,                /**< value to store as infimum */
   SCIP_Real             sup                 /**< value to store as supremum */
   );

/** sets interval to empty interval, which will be [1.0, -1.0] */
SCIP_EXPORT
void SCIPintervalSetEmpty(
   SCIP_INTERVAL*        resultant           /**< resultant interval of operation */
   );

/** indicates whether interval is empty, i.e., whether inf > sup */
SCIP_EXPORT
SCIP_Bool SCIPintervalIsEmpty(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

/** sets interval to entire [-infinity, +infinity] */
SCIP_EXPORT
void SCIPintervalSetEntire(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant           /**< resultant interval of operation */
   );

/** indicates whether interval is entire, i.e., whether inf <= -infinity and sup >= infinity */
SCIP_EXPORT
SCIP_Bool SCIPintervalIsEntire(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

/** indicates whether interval is positive infinity, i.e., [infinity, infinity] */
SCIP_EXPORT
SCIP_Bool SCIPintervalIsPositiveInfinity(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

/** indicates whether interval is negative infinity, i.e., [-infinity, -infinity] */
SCIP_EXPORT
SCIP_Bool SCIPintervalIsNegativeInfinity(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

#ifdef NDEBUG

/* In optimized mode, some function calls are overwritten by defines to reduce the number of function calls and
 * speed up the algorithms.
 * With SCIPintervalSetBounds we need to be a bit careful, since i and s could use resultant->inf and resultant->sup,
 * e.g., SCIPintervalSetBounds(&resultant, -resultant->sup, -resultant->inf).
 * So we need to make sure that we first evaluate both terms before setting resultant. 
 */

#define SCIPintervalGetInf(interval)               (interval).inf
#define SCIPintervalGetSup(interval)               (interval).sup
#define SCIPintervalSet(resultant, value)          do { (resultant)->inf = (value); (resultant)->sup = (resultant)->inf; } while( FALSE )
#define SCIPintervalSetBounds(resultant, i, s)     do { SCIP_Real scipintervaltemp; scipintervaltemp = (s); (resultant)->inf = (i); (resultant)->sup = scipintervaltemp; } while( FALSE )
#define SCIPintervalSetEmpty(resultant)            do { (resultant)->inf = 1.0; (resultant)->sup = -1.0; } while( FALSE )
#define SCIPintervalSetEntire(infinity, resultant) do { (resultant)->inf = -(infinity); (resultant)->sup =  (infinity); } while( FALSE )
#define SCIPintervalIsEmpty(infinity, operand)     ( (operand).inf > -(infinity) && (operand).sup < (infinity) && (operand).sup < (operand).inf )
#define SCIPintervalIsEntire(infinity, operand)    ( (operand).inf <= -(infinity) && (operand).sup >= (infinity) )
#define SCIPintervalIsPositiveInfinity(infinity, operand) ( (operand).inf >=  (infinity) && (operand).sup >= (operand).inf )
#define SCIPintervalIsNegativeInfinity(infinity, operand) ( (operand).sup <= -(infinity) && (operand).sup >= (operand).inf )

#endif

/** indicates whether operand1 is contained in operand2 */
SCIP_EXPORT
SCIP_Bool SCIPintervalIsSubsetEQ(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** indicates whether operand1 and operand2 are disjoint */
SCIP_EXPORT
SCIP_Bool SCIPintervalAreDisjoint(
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** intersection of two intervals */
SCIP_EXPORT
void SCIPintervalIntersect(
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** interval enclosure of the union of two intervals */
SCIP_EXPORT
void SCIPintervalUnify(
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** adds operand1 and operand2 and stores infimum of result in infimum of resultant */
SCIP_EXPORT
void SCIPintervalAddInf(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** adds operand1 and operand2 and stores supremum of result in supremum of resultant */
SCIP_EXPORT
void SCIPintervalAddSup(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** adds operand1 and operand2 and stores result in resultant */
SCIP_EXPORT
void SCIPintervalAdd(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** adds operand1 and scalar operand2 and stores result in resultant */
SCIP_EXPORT
void SCIPintervalAddScalar(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_Real             operand2            /**< second operand of operation */
   );

/** adds vector operand1 and vector operand2 and stores result in vector resultant */
SCIP_EXPORT
void SCIPintervalAddVectors(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< array of resultant intervals of operation */
   int                   length,             /**< length of arrays */
   SCIP_INTERVAL*        operand1,           /**< array of first operands of operation */
   SCIP_INTERVAL*        operand2            /**< array of second operands of operation */
   );

/** subtracts operand2 from operand1 and stores result in resultant */
SCIP_EXPORT
void SCIPintervalSub(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** subtracts scalar operand2 from operand1 and stores result in resultant */
SCIP_EXPORT
void SCIPintervalSubScalar(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_Real             operand2            /**< second operand of operation */
   );

/** multiplies operand1 with operand2 and stores infimum of result in infimum of resultant */
SCIP_EXPORT
void SCIPintervalMulInf(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation; can be +/-inf */
   SCIP_INTERVAL         operand2            /**< second operand of operation; can be +/-inf */
   );

/** multiplies operand1 with operand2 and stores supremum of result in supremum of resultant */
SCIP_EXPORT
void SCIPintervalMulSup(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation; can be +/-inf */
   SCIP_INTERVAL         operand2            /**< second operand of operation; can be +/-inf */
   );

/** multiplies operand1 with operand2 and stores result in resultant */
SCIP_EXPORT
void SCIPintervalMul(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** multiplies operand1 with scalar operand2 and stores infimum of result in infimum of resultant */
SCIP_EXPORT
void SCIPintervalMulScalarInf(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_Real             operand2            /**< second operand of operation; can be +/- inf */
   );

/** multiplies operand1 with scalar operand2 and stores supremum of result in supremum of resultant */
SCIP_EXPORT
void SCIPintervalMulScalarSup(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_Real             operand2            /**< second operand of operation; can be +/- inf */
   );

/** multiplies operand1 with scalar operand2 and stores result in resultant */
SCIP_EXPORT
void SCIPintervalMulScalar(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_Real             operand2            /**< second operand of operation */
   );

/** divides operand1 by operand2 and stores result in resultant */
SCIP_EXPORT
void SCIPintervalDiv(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** divides operand1 by scalar operand2 and stores result in resultant */
SCIP_EXPORT
void SCIPintervalDivScalar(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_Real             operand2            /**< second operand of operation */
   );

/** computes the scalar product of two vectors of intervals and stores result in resultant */
SCIP_EXPORT
void SCIPintervalScalprod(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   int                   length,             /**< length of vectors */
   SCIP_INTERVAL*        operand1,           /**< first  vector as array of intervals */
   SCIP_INTERVAL*        operand2            /**< second vector as array of intervals */
   );

/** computes the scalar product of a vector of intervals and a vector of scalars and stores infimum of result in infimum 
 *  of resultant 
 */
SCIP_EXPORT
void SCIPintervalScalprodScalarsInf(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   int                   length,             /**< length of vectors */
   SCIP_INTERVAL*        operand1,           /**< first vector as array of intervals */
   SCIP_Real*            operand2            /**< second vector as array of scalars; can have +/-inf entries */
   );

/** computes the scalar product of a vector of intervals and a vector of scalars and stores supremum of result in supremum
 *  of resultant 
 */
SCIP_EXPORT
void SCIPintervalScalprodScalarsSup(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   int                   length,             /**< length of vectors */
   SCIP_INTERVAL*        operand1,           /**< first vector as array of intervals */
   SCIP_Real*            operand2            /**< second vector as array of scalars; can have +/-inf entries */
   );

/** computes the scalar product of a vector of intervals and a vector of scalars and stores result in resultant */
SCIP_EXPORT
void SCIPintervalScalprodScalars(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   int                   length,             /**< length of vectors */
   SCIP_INTERVAL*        operand1,           /**< first vector as array of intervals */
   SCIP_Real*            operand2            /**< second vector as array of scalars; can have +/-inf entries */
   );

/** squares operand and stores result in resultant */
SCIP_EXPORT
void SCIPintervalSquare(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

/** stores (positive part of) square root of operand in resultant
 * @attention we assume a correctly rounded sqrt(double) function when rounding is to nearest
 */
SCIP_EXPORT
void SCIPintervalSquareRoot(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

/** stores operand1 to the power of operand2 in resultant
 * 
 * uses SCIPintervalPowerScalar if operand2 is a scalar, otherwise computes exp(op2*log(op1))
 */
SCIP_EXPORT
void SCIPintervalPower(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** stores operand1 to the power of the scalar operand2 in resultant */
SCIP_EXPORT
void SCIPintervalPowerScalar(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_Real             operand2            /**< second operand of operation */
   );

/** stores bounds on the power of a scalar operand1 to a scalar operand2 in resultant
 * both operands need to be finite numbers
 * need to have operand1 >= 0 or operand2 integer and need to have operand2 >= 0 if operand1 == 0
 * @attention we assume a correctly rounded pow(double) function when rounding is to nearest
 */
SCIP_EXPORT
void SCIPintervalPowerScalarScalar(
   SCIP_INTERVAL*        resultant,          /**< resultant of operation */
   SCIP_Real             operand1,           /**< first operand of operation */
   SCIP_Real             operand2            /**< second operand of operation */
   );

/** computes lower bound on power of a scalar operand1 to an integer operand2
 * both operands need to be finite numbers
 * need to have operand1 >= 0 and need to have operand2 >= 0 if operand1 == 0
 */
SCIP_EXPORT
SCIP_Real SCIPintervalPowerScalarIntegerInf(
   SCIP_Real             operand1,           /**< first operand of operation */
   int                   operand2            /**< second operand of operation */
   );

/** computes upper bound on power of a scalar operand1 to an integer operand2
 * both operands need to be finite numbers
 * need to have operand1 >= 0 and need to have operand2 >= 0 if operand1 == 0
 */
SCIP_EXPORT
SCIP_Real SCIPintervalPowerScalarIntegerSup(
   SCIP_Real             operand1,           /**< first operand of operation */
   int                   operand2            /**< second operand of operation */
   );

/** computes bounds on power of a scalar operand1 to an integer operand2
 * both operands need to be finite numbers
 * need to have operand1 >= 0 and need to have operand2 >= 0 if operand1 == 0
 */
SCIP_EXPORT
void SCIPintervalPowerScalarInteger(
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_Real             operand1,           /**< first operand of operation */
   int                   operand2            /**< second operand of operation */
   );

/** given an interval for the image of a power operation, computes an interval for the origin
 * that is, for y = x^p with p = exponent a given scalar and y = image a given interval,
 * computes a subinterval x of basedomain such that y in x^p and such that for all z in basedomain less x, z^p not in y
 */
SCIP_EXPORT
void SCIPintervalPowerScalarInverse(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         basedomain,         /**< domain of base */
   SCIP_Real             exponent,           /**< exponent */
   SCIP_INTERVAL         image               /**< interval image of power */
   );

/** stores operand1 to the signed power of the scalar positive operand2 in resultant 
 * 
 * the signed power of x w.r.t. an exponent n >= 0 is given as sign(x) * abs(x)^n
 *
 * @attention we assume correctly rounded sqrt(double) and pow(double) functions when rounding is to nearest
 */
SCIP_EXPORT
void SCIPintervalSignPowerScalar(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_Real             operand2            /**< second operand of operation */
   );

/** computes the reciprocal of an interval
 */
SCIP_EXPORT
void SCIPintervalReciprocal(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

/** stores exponential of operand in resultant
 * @attention we assume a correctly rounded exp(double) function when rounding is to nearest
 */
SCIP_EXPORT
void SCIPintervalExp(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

/** stores natural logarithm of operand in resultant
 * @attention we assume a correctly rounded log(double) function when rounding is to nearest
 */
SCIP_EXPORT
void SCIPintervalLog(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

/** stores minimum of operands in resultant */
SCIP_EXPORT
void SCIPintervalMin(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** stores maximum of operands in resultant */
SCIP_EXPORT
void SCIPintervalMax(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand1,           /**< first operand of operation */
   SCIP_INTERVAL         operand2            /**< second operand of operation */
   );

/** stores absolute value of operand in resultant */
SCIP_EXPORT
void SCIPintervalAbs(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

/** stores sine value of operand in resultant
 * NOTE: the operations are not applied rounding-safe here
 */
SCIP_EXPORT
void SCIPintervalSin(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

/** stores cosine value of operand in resultant
 * NOTE: the operations are not applied rounding-safe here
 */
SCIP_EXPORT
void SCIPintervalCos(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

/** stores sign of operand in resultant */
SCIP_EXPORT
void SCIPintervalSign(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         operand             /**< operand of operation */
   );

/** computes exact upper bound on \f$ a x^2 + b x \f$ for x in [xlb, xub], b an interval, and a scalar
 * 
 * Uses Algorithm 2.2 from Domes and Neumaier: Constraint propagation on quadratic constraints (2008) */
SCIP_EXPORT
SCIP_Real SCIPintervalQuadUpperBound(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_Real             a,                  /**< coefficient of x^2 */
   SCIP_INTERVAL         b_,                 /**< coefficient of x */
   SCIP_INTERVAL         x                   /**< range of x */
   );

/** stores range of quadratic term in resultant
 * 
 * given scalar a and intervals b and x, computes interval for \f$ a x^2 + b x \f$ */
SCIP_EXPORT
void SCIPintervalQuad(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_Real             sqrcoeff,           /**< coefficient of x^2 */
   SCIP_INTERVAL         lincoeff,           /**< coefficient of x */
   SCIP_INTERVAL         xrng                /**< range of x */
   );


/** computes interval with positive solutions of a quadratic equation with interval coefficients
 * 
 * Given intervals a, b, and c, this function computes an interval that contains all positive solutions of \f$ a x^2 + b x \in c\f$ within xbnds.
 */
SCIP_EXPORT
void SCIPintervalSolveUnivariateQuadExpressionPositive(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         sqrcoeff,           /**< coefficient of x^2 */
   SCIP_INTERVAL         lincoeff,           /**< coefficient of x */
   SCIP_INTERVAL         rhs,                /**< right hand side of equation */
   SCIP_INTERVAL         xbnds               /**< bounds on x */
   );

/** computes interval with negative solutions of a quadratic equation with interval coefficients
 *
 * Given intervals a, b, and c, this function computes an interval that contains all negative solutions of \f$ a x^2 + b x \in c\f$ within xbnds.
 */
SCIP_EXPORT
void SCIPintervalSolveUnivariateQuadExpressionNegative(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         sqrcoeff,           /**< coefficient of x^2 */
   SCIP_INTERVAL         lincoeff,           /**< coefficient of x */
   SCIP_INTERVAL         rhs,                /**< right hand side of equation */
   SCIP_INTERVAL         xbnds               /**< bounds on x */
   );

/** computes positive solutions of a quadratic equation with scalar coefficients
 * 
 * Given scalar a, b, and c, this function computes an interval that contains all positive solutions of \f$ a x^2 + b x \geq c\f$ within xbnds.
 * Implements Algorithm 3.2 from Domes and Neumaier: Constraint propagation on quadratic constraints (2008).
 */
SCIP_EXPORT
void SCIPintervalSolveUnivariateQuadExpressionPositiveAllScalar(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_Real             sqrcoeff,           /**< coefficient of x^2 */
   SCIP_Real             lincoeff,           /**< coefficient of x */
   SCIP_Real             rhs,                /**< right hand side of equation */
   SCIP_INTERVAL         xbnds               /**< bounds on x */
   );

/** solves a quadratic equation with interval coefficients
 *
 * Given intervals a, b and c, this function computes an interval that contains all solutions of \f$ a x^2 + b x \in c\f$ within xbnds
 */
SCIP_EXPORT
void SCIPintervalSolveUnivariateQuadExpression(
   SCIP_Real             infinity,           /**< value for infinity */
   SCIP_INTERVAL*        resultant,          /**< resultant interval of operation */
   SCIP_INTERVAL         sqrcoeff,           /**< coefficient of x^2 */
   SCIP_INTERVAL         lincoeff,           /**< coefficient of x */
   SCIP_INTERVAL         rhs,                /**< right hand side of equation */
   SCIP_INTERVAL         xbnds               /**< bounds on x */
   );

/** stores range of bivariate quadratic term in resultant
 * given scalars ax, ay, axy, bx, and by and intervals for x and y, computes interval for \f$ ax x^2 + ay y^2 + axy x y + bx x + by y \f$
 * NOTE: the operations are not applied rounding-safe here
 */
SCIP_EXPORT
void SCIPintervalQuadBivar(
   SCIP_Real             infinity,           /**< value for infinity in interval arithmetics */
   SCIP_INTERVAL*        resultant,          /**< buffer where to store result of operation */
   SCIP_Real             ax,                 /**< square coefficient of x */
   SCIP_Real             ay,                 /**< square coefficient of y */
   SCIP_Real             axy,                /**< bilinear coefficients */
   SCIP_Real             bx,                 /**< linear coefficient of x */
   SCIP_Real             by,                 /**< linear coefficient of y */
   SCIP_INTERVAL         xbnds,              /**< bounds on x */
   SCIP_INTERVAL         ybnds               /**< bounds on y */
   );

/** solves a bivariate quadratic equation for the first variable
 * given scalars ax, ay, axy, bx and by, and intervals for x, y, and rhs,
 * computes \f$ \{ x \in \mathbf{x} : \exists y \in \mathbf{y} : a_x x^2 + a_y y^2 + a_{xy} x y + b_x x + b_y y \in \mathbf{\mbox{rhs}} \} \f$
 * NOTE: the operations are not applied rounding-safe here
 */
SCIP_EXPORT
void SCIPintervalSolveBivariateQuadExpressionAllScalar(
   SCIP_Real             infinity,           /**< value for infinity in interval arithmetics */
   SCIP_INTERVAL*        resultant,          /**< buffer where to store result of operation */
   SCIP_Real             ax,                 /**< square coefficient of x */
   SCIP_Real             ay,                 /**< square coefficient of y */
   SCIP_Real             axy,                /**< bilinear coefficients */
   SCIP_Real             bx,                 /**< linear coefficient of x */
   SCIP_Real             by,                 /**< linear coefficient of y */
   SCIP_INTERVAL         rhs,                /**< right-hand-side of equation */
   SCIP_INTERVAL         xbnds,              /**< bounds on x */
   SCIP_INTERVAL         ybnds               /**< bounds on y */
   );

#ifdef __cplusplus
}
#endif

#endif