Inverse_SSE.h 12.8 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2001 Intel Corporation
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
Don Gagne's avatar
Don Gagne committed
8 9 10
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

// The SSE code for the 4x4 float and double matrix inverse in this file
// comes from the following Intel's library:
// http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/
//
// Here is the respective copyright and license statement:
//
//   Copyright (c) 2001 Intel Corporation.
//
// Permition is granted to use, copy, distribute and prepare derivative works
// of this library for any purpose and without fee, provided, that the above
// copyright notice and this statement appear in all copies.
// Intel makes no representations about the suitability of this software for
// any purpose, and specifically disclaims all warranties.
// See LEGAL.TXT for all the legal information.

#ifndef EIGEN_INVERSE_SSE_H
#define EIGEN_INVERSE_SSE_H

Don Gagne's avatar
Don Gagne committed
30 31
namespace Eigen { 

LM's avatar
LM committed
32 33 34 35 36 37 38 39 40 41 42 43 44
namespace internal {

template<typename MatrixType, typename ResultType>
struct compute_inverse_size4<Architecture::SSE, float, MatrixType, ResultType>
{
  enum {
    MatrixAlignment     = bool(MatrixType::Flags&AlignedBit),
    ResultAlignment     = bool(ResultType::Flags&AlignedBit),
    StorageOrdersMatch  = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit)
  };
  
  static void run(const MatrixType& matrix, ResultType& result)
  {
Don Gagne's avatar
Don Gagne committed
45
    EIGEN_ALIGN16 const unsigned int _Sign_PNNP[4] = { 0x00000000, 0x80000000, 0x80000000, 0x00000000 };
LM's avatar
LM committed
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

    // Load the full matrix into registers
    __m128 _L1 = matrix.template packet<MatrixAlignment>( 0);
    __m128 _L2 = matrix.template packet<MatrixAlignment>( 4);
    __m128 _L3 = matrix.template packet<MatrixAlignment>( 8);
    __m128 _L4 = matrix.template packet<MatrixAlignment>(12);

    // The inverse is calculated using "Divide and Conquer" technique. The
    // original matrix is divide into four 2x2 sub-matrices. Since each
    // register holds four matrix element, the smaller matrices are
    // represented as a registers. Hence we get a better locality of the
    // calculations.

    __m128 A, B, C, D; // the four sub-matrices
    if(!StorageOrdersMatch)
    {
      A = _mm_unpacklo_ps(_L1, _L2);
      B = _mm_unpacklo_ps(_L3, _L4);
      C = _mm_unpackhi_ps(_L1, _L2);
      D = _mm_unpackhi_ps(_L3, _L4);
    }
    else
    {
      A = _mm_movelh_ps(_L1, _L2);
      B = _mm_movehl_ps(_L2, _L1);
      C = _mm_movelh_ps(_L3, _L4);
      D = _mm_movehl_ps(_L4, _L3);
    }

    __m128 iA, iB, iC, iD,                 // partial inverse of the sub-matrices
            DC, AB;
    __m128 dA, dB, dC, dD;                 // determinant of the sub-matrices
    __m128 det, d, d1, d2;
    __m128 rd;                             // reciprocal of the determinant

    //  AB = A# * B
    AB = _mm_mul_ps(_mm_shuffle_ps(A,A,0x0F), B);
    AB = _mm_sub_ps(AB,_mm_mul_ps(_mm_shuffle_ps(A,A,0xA5), _mm_shuffle_ps(B,B,0x4E)));
    //  DC = D# * C
    DC = _mm_mul_ps(_mm_shuffle_ps(D,D,0x0F), C);
    DC = _mm_sub_ps(DC,_mm_mul_ps(_mm_shuffle_ps(D,D,0xA5), _mm_shuffle_ps(C,C,0x4E)));

    //  dA = |A|
    dA = _mm_mul_ps(_mm_shuffle_ps(A, A, 0x5F),A);
    dA = _mm_sub_ss(dA, _mm_movehl_ps(dA,dA));
    //  dB = |B|
    dB = _mm_mul_ps(_mm_shuffle_ps(B, B, 0x5F),B);
    dB = _mm_sub_ss(dB, _mm_movehl_ps(dB,dB));

    //  dC = |C|
    dC = _mm_mul_ps(_mm_shuffle_ps(C, C, 0x5F),C);
    dC = _mm_sub_ss(dC, _mm_movehl_ps(dC,dC));
    //  dD = |D|
    dD = _mm_mul_ps(_mm_shuffle_ps(D, D, 0x5F),D);
    dD = _mm_sub_ss(dD, _mm_movehl_ps(dD,dD));

    //  d = trace(AB*DC) = trace(A#*B*D#*C)
    d = _mm_mul_ps(_mm_shuffle_ps(DC,DC,0xD8),AB);

    //  iD = C*A#*B
    iD = _mm_mul_ps(_mm_shuffle_ps(C,C,0xA0), _mm_movelh_ps(AB,AB));
    iD = _mm_add_ps(iD,_mm_mul_ps(_mm_shuffle_ps(C,C,0xF5), _mm_movehl_ps(AB,AB)));
    //  iA = B*D#*C
    iA = _mm_mul_ps(_mm_shuffle_ps(B,B,0xA0), _mm_movelh_ps(DC,DC));
    iA = _mm_add_ps(iA,_mm_mul_ps(_mm_shuffle_ps(B,B,0xF5), _mm_movehl_ps(DC,DC)));

    //  d = trace(AB*DC) = trace(A#*B*D#*C) [continue]
    d  = _mm_add_ps(d, _mm_movehl_ps(d, d));
    d  = _mm_add_ss(d, _mm_shuffle_ps(d, d, 1));
    d1 = _mm_mul_ss(dA,dD);
    d2 = _mm_mul_ss(dB,dC);

    //  iD = D*|A| - C*A#*B
    iD = _mm_sub_ps(_mm_mul_ps(D,_mm_shuffle_ps(dA,dA,0)), iD);

    //  iA = A*|D| - B*D#*C;
    iA = _mm_sub_ps(_mm_mul_ps(A,_mm_shuffle_ps(dD,dD,0)), iA);

    //  det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C)
    det = _mm_sub_ss(_mm_add_ss(d1,d2),d);
    rd  = _mm_div_ss(_mm_set_ss(1.0f), det);

//     #ifdef ZERO_SINGULAR
//         rd = _mm_and_ps(_mm_cmpneq_ss(det,_mm_setzero_ps()), rd);
//     #endif

    //  iB = D * (A#B)# = D*B#*A
    iB = _mm_mul_ps(D, _mm_shuffle_ps(AB,AB,0x33));
    iB = _mm_sub_ps(iB, _mm_mul_ps(_mm_shuffle_ps(D,D,0xB1), _mm_shuffle_ps(AB,AB,0x66)));
    //  iC = A * (D#C)# = A*C#*D
    iC = _mm_mul_ps(A, _mm_shuffle_ps(DC,DC,0x33));
    iC = _mm_sub_ps(iC, _mm_mul_ps(_mm_shuffle_ps(A,A,0xB1), _mm_shuffle_ps(DC,DC,0x66)));

    rd = _mm_shuffle_ps(rd,rd,0);
    rd = _mm_xor_ps(rd, _mm_load_ps((float*)_Sign_PNNP));

    //  iB = C*|B| - D*B#*A
    iB = _mm_sub_ps(_mm_mul_ps(C,_mm_shuffle_ps(dB,dB,0)), iB);

    //  iC = B*|C| - A*C#*D;
    iC = _mm_sub_ps(_mm_mul_ps(B,_mm_shuffle_ps(dC,dC,0)), iC);

    //  iX = iX / det
    iA = _mm_mul_ps(rd,iA);
    iB = _mm_mul_ps(rd,iB);
    iC = _mm_mul_ps(rd,iC);
    iD = _mm_mul_ps(rd,iD);

    result.template writePacket<ResultAlignment>( 0, _mm_shuffle_ps(iA,iB,0x77));
    result.template writePacket<ResultAlignment>( 4, _mm_shuffle_ps(iA,iB,0x22));
    result.template writePacket<ResultAlignment>( 8, _mm_shuffle_ps(iC,iD,0x77));
    result.template writePacket<ResultAlignment>(12, _mm_shuffle_ps(iC,iD,0x22));
  }

};

template<typename MatrixType, typename ResultType>
struct compute_inverse_size4<Architecture::SSE, double, MatrixType, ResultType>
{
  enum {
    MatrixAlignment = bool(MatrixType::Flags&AlignedBit),
    ResultAlignment = bool(ResultType::Flags&AlignedBit),
    StorageOrdersMatch  = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit)
  };
  static void run(const MatrixType& matrix, ResultType& result)
  {
Don Gagne's avatar
Don Gagne committed
172 173
    const __m128d _Sign_NP = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0));
    const __m128d _Sign_PN = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
LM's avatar
LM committed
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

    // The inverse is calculated using "Divide and Conquer" technique. The
    // original matrix is divide into four 2x2 sub-matrices. Since each
    // register of the matrix holds two element, the smaller matrices are
    // consisted of two registers. Hence we get a better locality of the
    // calculations.

    // the four sub-matrices
    __m128d A1, A2, B1, B2, C1, C2, D1, D2;
    
    if(StorageOrdersMatch)
    {
      A1 = matrix.template packet<MatrixAlignment>( 0); B1 = matrix.template packet<MatrixAlignment>( 2);
      A2 = matrix.template packet<MatrixAlignment>( 4); B2 = matrix.template packet<MatrixAlignment>( 6);
      C1 = matrix.template packet<MatrixAlignment>( 8); D1 = matrix.template packet<MatrixAlignment>(10);
      C2 = matrix.template packet<MatrixAlignment>(12); D2 = matrix.template packet<MatrixAlignment>(14);
    }
    else
    {
      __m128d tmp;
      A1 = matrix.template packet<MatrixAlignment>( 0); C1 = matrix.template packet<MatrixAlignment>( 2);
      A2 = matrix.template packet<MatrixAlignment>( 4); C2 = matrix.template packet<MatrixAlignment>( 6);
      tmp = A1;
      A1 = _mm_unpacklo_pd(A1,A2);
      A2 = _mm_unpackhi_pd(tmp,A2);
      tmp = C1;
      C1 = _mm_unpacklo_pd(C1,C2);
      C2 = _mm_unpackhi_pd(tmp,C2);
      
      B1 = matrix.template packet<MatrixAlignment>( 8); D1 = matrix.template packet<MatrixAlignment>(10);
      B2 = matrix.template packet<MatrixAlignment>(12); D2 = matrix.template packet<MatrixAlignment>(14);
      tmp = B1;
      B1 = _mm_unpacklo_pd(B1,B2);
      B2 = _mm_unpackhi_pd(tmp,B2);
      tmp = D1;
      D1 = _mm_unpacklo_pd(D1,D2);
      D2 = _mm_unpackhi_pd(tmp,D2);
    }
    
    __m128d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2,     // partial invese of the sub-matrices
            DC1, DC2, AB1, AB2;
    __m128d dA, dB, dC, dD;     // determinant of the sub-matrices
    __m128d det, d1, d2, rd;

    //  dA = |A|
    dA = _mm_shuffle_pd(A2, A2, 1);
    dA = _mm_mul_pd(A1, dA);
    dA = _mm_sub_sd(dA, _mm_shuffle_pd(dA,dA,3));
    //  dB = |B|
    dB = _mm_shuffle_pd(B2, B2, 1);
    dB = _mm_mul_pd(B1, dB);
    dB = _mm_sub_sd(dB, _mm_shuffle_pd(dB,dB,3));

    //  AB = A# * B
    AB1 = _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,3));
    AB2 = _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,0));
    AB1 = _mm_sub_pd(AB1, _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,3)));
    AB2 = _mm_sub_pd(AB2, _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,0)));

    //  dC = |C|
    dC = _mm_shuffle_pd(C2, C2, 1);
    dC = _mm_mul_pd(C1, dC);
    dC = _mm_sub_sd(dC, _mm_shuffle_pd(dC,dC,3));
    //  dD = |D|
    dD = _mm_shuffle_pd(D2, D2, 1);
    dD = _mm_mul_pd(D1, dD);
    dD = _mm_sub_sd(dD, _mm_shuffle_pd(dD,dD,3));

    //  DC = D# * C
    DC1 = _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,3));
    DC2 = _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,0));
    DC1 = _mm_sub_pd(DC1, _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,3)));
    DC2 = _mm_sub_pd(DC2, _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,0)));

    //  rd = trace(AB*DC) = trace(A#*B*D#*C)
    d1 = _mm_mul_pd(AB1, _mm_shuffle_pd(DC1, DC2, 0));
    d2 = _mm_mul_pd(AB2, _mm_shuffle_pd(DC1, DC2, 3));
    rd = _mm_add_pd(d1, d2);
    rd = _mm_add_sd(rd, _mm_shuffle_pd(rd, rd,3));

    //  iD = C*A#*B
    iD1 = _mm_mul_pd(AB1, _mm_shuffle_pd(C1,C1,0));
    iD2 = _mm_mul_pd(AB1, _mm_shuffle_pd(C2,C2,0));
    iD1 = _mm_add_pd(iD1, _mm_mul_pd(AB2, _mm_shuffle_pd(C1,C1,3)));
    iD2 = _mm_add_pd(iD2, _mm_mul_pd(AB2, _mm_shuffle_pd(C2,C2,3)));

    //  iA = B*D#*C
    iA1 = _mm_mul_pd(DC1, _mm_shuffle_pd(B1,B1,0));
    iA2 = _mm_mul_pd(DC1, _mm_shuffle_pd(B2,B2,0));
    iA1 = _mm_add_pd(iA1, _mm_mul_pd(DC2, _mm_shuffle_pd(B1,B1,3)));
    iA2 = _mm_add_pd(iA2, _mm_mul_pd(DC2, _mm_shuffle_pd(B2,B2,3)));

    //  iD = D*|A| - C*A#*B
    dA = _mm_shuffle_pd(dA,dA,0);
    iD1 = _mm_sub_pd(_mm_mul_pd(D1, dA), iD1);
    iD2 = _mm_sub_pd(_mm_mul_pd(D2, dA), iD2);

    //  iA = A*|D| - B*D#*C;
    dD = _mm_shuffle_pd(dD,dD,0);
    iA1 = _mm_sub_pd(_mm_mul_pd(A1, dD), iA1);
    iA2 = _mm_sub_pd(_mm_mul_pd(A2, dD), iA2);

    d1 = _mm_mul_sd(dA, dD);
    d2 = _mm_mul_sd(dB, dC);

    //  iB = D * (A#B)# = D*B#*A
    iB1 = _mm_mul_pd(D1, _mm_shuffle_pd(AB2,AB1,1));
    iB2 = _mm_mul_pd(D2, _mm_shuffle_pd(AB2,AB1,1));
    iB1 = _mm_sub_pd(iB1, _mm_mul_pd(_mm_shuffle_pd(D1,D1,1), _mm_shuffle_pd(AB2,AB1,2)));
    iB2 = _mm_sub_pd(iB2, _mm_mul_pd(_mm_shuffle_pd(D2,D2,1), _mm_shuffle_pd(AB2,AB1,2)));

    //  det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C)
    det = _mm_add_sd(d1, d2);
    det = _mm_sub_sd(det, rd);

    //  iC = A * (D#C)# = A*C#*D
    iC1 = _mm_mul_pd(A1, _mm_shuffle_pd(DC2,DC1,1));
    iC2 = _mm_mul_pd(A2, _mm_shuffle_pd(DC2,DC1,1));
    iC1 = _mm_sub_pd(iC1, _mm_mul_pd(_mm_shuffle_pd(A1,A1,1), _mm_shuffle_pd(DC2,DC1,2)));
    iC2 = _mm_sub_pd(iC2, _mm_mul_pd(_mm_shuffle_pd(A2,A2,1), _mm_shuffle_pd(DC2,DC1,2)));

    rd = _mm_div_sd(_mm_set_sd(1.0), det);
//     #ifdef ZERO_SINGULAR
//         rd = _mm_and_pd(_mm_cmpneq_sd(det,_mm_setzero_pd()), rd);
//     #endif
    rd = _mm_shuffle_pd(rd,rd,0);

    //  iB = C*|B| - D*B#*A
    dB = _mm_shuffle_pd(dB,dB,0);
    iB1 = _mm_sub_pd(_mm_mul_pd(C1, dB), iB1);
    iB2 = _mm_sub_pd(_mm_mul_pd(C2, dB), iB2);

Don Gagne's avatar
Don Gagne committed
306 307
    d1 = _mm_xor_pd(rd, _Sign_PN);
    d2 = _mm_xor_pd(rd, _Sign_NP);
LM's avatar
LM committed
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

    //  iC = B*|C| - A*C#*D;
    dC = _mm_shuffle_pd(dC,dC,0);
    iC1 = _mm_sub_pd(_mm_mul_pd(B1, dC), iC1);
    iC2 = _mm_sub_pd(_mm_mul_pd(B2, dC), iC2);

    result.template writePacket<ResultAlignment>( 0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1));     // iA# / det
    result.template writePacket<ResultAlignment>( 4, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2));
    result.template writePacket<ResultAlignment>( 2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1));     // iB# / det
    result.template writePacket<ResultAlignment>( 6, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2));
    result.template writePacket<ResultAlignment>( 8, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1));     // iC# / det
    result.template writePacket<ResultAlignment>(12, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2));
    result.template writePacket<ResultAlignment>(10, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1));     // iD# / det
    result.template writePacket<ResultAlignment>(14, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2));
  }
};

Don Gagne's avatar
Don Gagne committed
325 326 327
} // end namespace internal

} // end namespace Eigen
LM's avatar
LM committed
328 329

#endif // EIGEN_INVERSE_SSE_H