Scaling.h 6.14 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_SCALING_H
#define EIGEN_SCALING_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen { 

LM's avatar
LM committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/** \geometry_module \ingroup Geometry_Module
  *
  * \class Scaling
  *
  * \brief Represents a generic uniform scaling transformation
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients.
  *
  * This class represent a uniform scaling transformation. It is the return
  * type of Scaling(Scalar), and most of the time this is the only way it
  * is used. In particular, this class is not aimed to be used to store a scaling transformation,
  * but rather to make easier the constructions and updates of Transform objects.
  *
  * To represent an axis aligned scaling, use the DiagonalMatrix class.
  *
  * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform
  */
template<typename _Scalar>
class UniformScaling
{
public:
  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;

protected:

  Scalar m_factor;

public:

  /** Default constructor without initialization. */
  UniformScaling() {}
  /** Constructs and initialize a uniform scaling transformation */
  explicit inline UniformScaling(const Scalar& s) : m_factor(s) {}

  inline const Scalar& factor() const { return m_factor; }
  inline Scalar& factor() { return m_factor; }

  /** Concatenates two uniform scaling */
  inline UniformScaling operator* (const UniformScaling& other) const
  { return UniformScaling(m_factor * other.factor()); }

  /** Concatenates a uniform scaling and a translation */
  template<int Dim>
  inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const;

  /** Concatenates a uniform scaling and an affine transformation */
  template<int Dim, int Mode, int Options>
Don Gagne's avatar
Don Gagne committed
63 64 65 66 67 68
  inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const
  {
   Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t;
   res.prescale(factor());
   return res;
}
LM's avatar
LM committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

  /** Concatenates a uniform scaling and a linear transformation matrix */
  // TODO returns an expression
  template<typename Derived>
  inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const
  { return other * m_factor; }

  template<typename Derived,int Dim>
  inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const
  { return r.toRotationMatrix() * m_factor; }

  /** \returns the inverse scaling */
  inline UniformScaling inverse() const
  { return UniformScaling(Scalar(1)/m_factor); }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline UniformScaling<NewScalarType> cast() const
  { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other)
  { m_factor = Scalar(other.factor()); }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
Don Gagne's avatar
Don Gagne committed
102
  bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
LM's avatar
LM committed
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  { return internal::isApprox(m_factor, other.factor(), prec); }

};

/** Concatenates a linear transformation matrix and a uniform scaling */
// NOTE this operator is defiend in MatrixBase and not as a friend function
// of UniformScaling to fix an internal crash of Intel's ICC
template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType
MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const
{ return derived() * s.factor(); }

/** Constructs a uniform scaling from scale factor \a s */
static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
/** Constructs a uniform scaling from scale factor \a s */
static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
/** Constructs a uniform scaling from scale factor \a s */
template<typename RealScalar>
static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
{ return UniformScaling<std::complex<RealScalar> >(s); }

/** Constructs a 2D axis aligned scaling */
template<typename Scalar>
Don Gagne's avatar
Don Gagne committed
125
static inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy)
LM's avatar
LM committed
126 127 128
{ return DiagonalMatrix<Scalar,2>(sx, sy); }
/** Constructs a 3D axis aligned scaling */
template<typename Scalar>
Don Gagne's avatar
Don Gagne committed
129
static inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
LM's avatar
LM committed
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
{ return DiagonalMatrix<Scalar,3>(sx, sy, sz); }

/** Constructs an axis aligned scaling expression from vector expression \a coeffs
  * This is an alias for coeffs.asDiagonal()
  */
template<typename Derived>
static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
{ return coeffs.asDiagonal(); }

/** \addtogroup Geometry_Module */
//@{
/** \deprecated */
typedef DiagonalMatrix<float, 2> AlignedScaling2f;
/** \deprecated */
typedef DiagonalMatrix<double,2> AlignedScaling2d;
/** \deprecated */
typedef DiagonalMatrix<float, 3> AlignedScaling3f;
/** \deprecated */
typedef DiagonalMatrix<double,3> AlignedScaling3d;
//@}

template<typename Scalar>
template<int Dim>
inline Transform<Scalar,Dim,Affine>
UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const
{
  Transform<Scalar,Dim,Affine> res;
  res.matrix().setZero();
  res.linear().diagonal().fill(factor());
  res.translation() = factor() * t.vector();
  res(Dim,Dim) = Scalar(1);
  return res;
}

Don Gagne's avatar
Don Gagne committed
164
} // end namespace Eigen
LM's avatar
LM committed
165 166

#endif // EIGEN_SCALING_H