AngleAxis.h 6.83 KB
Newer Older
LM's avatar
LM committed
1
// This file is part of Eigen, a lightweight C++ template library
Don Gagne's avatar
Don Gagne committed
2
// for linear algebra.
LM's avatar
LM committed
3 4 5
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11

// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway

Don Gagne's avatar
Don Gagne committed
12
namespace Eigen { 
LM's avatar
LM committed
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

/** \geometry_module \ingroup Geometry_Module
  *
  * \class AngleAxis
  *
  * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients.
  *
  * The following two typedefs are provided for convenience:
  * \li \c AngleAxisf for \c float
  * \li \c AngleAxisd for \c double
  *
  * \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles
  *
  * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
  * mimic Euler-angles. Here is an example:
  * \include AngleAxis_mimic_euler.cpp
  * Output: \verbinclude AngleAxis_mimic_euler.out
  *
  * \note This class is not aimed to be used to store a rotation transformation,
  * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
  * and transformation objects.
  *
  * \sa class Quaternion, class Transform, MatrixBase::UnitX()
  */

template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> >
{
  typedef _Scalar Scalar;
};

template<typename _Scalar>
class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
{
  typedef RotationBase<AngleAxis<_Scalar>,3> Base;

public:

  using Base::operator*;

  enum { Dim = 3 };
  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;
  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Quaternion<Scalar> QuaternionType;

protected:

  Vector3 m_axis;
  Scalar m_angle;

public:

  /** Default constructor without initialization. */
  AngleAxis() {}
  /** Constructs and initialize the angle-axis rotation from an \a angle in radian
    * and an \a axis which must be normalized. */
  template<typename Derived>
  inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
  /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
  inline AngleAxis(const QuaternionType& q) { *this = q; }
  /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
  template<typename Derived>
  inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }

  Scalar angle() const { return m_angle; }
  Scalar& angle() { return m_angle; }

  const Vector3& axis() const { return m_axis; }
  Vector3& axis() { return m_axis; }

  /** Concatenates two rotations */
  inline QuaternionType operator* (const AngleAxis& other) const
  { return QuaternionType(*this) * QuaternionType(other); }

  /** Concatenates two rotations */
  inline QuaternionType operator* (const QuaternionType& other) const
  { return QuaternionType(*this) * other; }

  /** Concatenates two rotations */
  friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
  { return a * QuaternionType(b); }

  /** Concatenates two rotations */
  inline Matrix3 operator* (const Matrix3& other) const
  { return toRotationMatrix() * other; }

  /** Concatenates two rotations */
  inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b)
  { return a * b.toRotationMatrix(); }

  /** Applies rotation to vector */
  inline Vector3 operator* (const Vector3& other) const
  { return toRotationMatrix() * other; }

  /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
  AngleAxis inverse() const
  { return AngleAxis(-m_angle, m_axis); }

  AngleAxis& operator=(const QuaternionType& q);
  template<typename Derived>
  AngleAxis& operator=(const MatrixBase<Derived>& m);

  template<typename Derived>
  AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
  Matrix3 toRotationMatrix(void) const;

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
  { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
  {
    m_axis = other.axis().template cast<Scalar>();
    m_angle = Scalar(other.angle());
  }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
  { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); }
};

/** \ingroup Geometry_Module
  * single precision angle-axis type */
typedef AngleAxis<float> AngleAxisf;
/** \ingroup Geometry_Module
  * double precision angle-axis type */
typedef AngleAxis<double> AngleAxisd;

/** Set \c *this from a quaternion.
  * The axis is normalized.
  */
template<typename Scalar>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
{
  Scalar n2 = q.vec().squaredNorm();
  if (n2 < precision<Scalar>()*precision<Scalar>())
  {
    m_angle = 0;
    m_axis << 1, 0, 0;
  }
  else
  {
    m_angle = 2*std::acos(q.w());
    m_axis = q.vec() / ei_sqrt(n2);
  }
  return *this;
}

/** Set \c *this from a 3x3 rotation matrix \a mat.
  */
template<typename Scalar>
template<typename Derived>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
{
  // Since a direct conversion would not be really faster,
  // let's use the robust Quaternion implementation:
  return *this = QuaternionType(mat);
}

/** Constructs and \returns an equivalent 3x3 rotation matrix.
  */
template<typename Scalar>
typename AngleAxis<Scalar>::Matrix3
AngleAxis<Scalar>::toRotationMatrix(void) const
{
  Matrix3 res;
  Vector3 sin_axis  = ei_sin(m_angle) * m_axis;
  Scalar c = ei_cos(m_angle);
  Vector3 cos1_axis = (Scalar(1)-c) * m_axis;

  Scalar tmp;
  tmp = cos1_axis.x() * m_axis.y();
  res.coeffRef(0,1) = tmp - sin_axis.z();
  res.coeffRef(1,0) = tmp + sin_axis.z();

  tmp = cos1_axis.x() * m_axis.z();
  res.coeffRef(0,2) = tmp + sin_axis.y();
  res.coeffRef(2,0) = tmp - sin_axis.y();

  tmp = cos1_axis.y() * m_axis.z();
  res.coeffRef(1,2) = tmp - sin_axis.x();
  res.coeffRef(2,1) = tmp + sin_axis.x();

  res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c;

  return res;
}
Don Gagne's avatar
Don Gagne committed
213 214

} // end namespace Eigen