MathFunctions.h 21.4 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen {

LM's avatar
LM committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
namespace internal {

/** \internal \struct global_math_functions_filtering_base
  *
  * What it does:
  * Defines a typedef 'type' as follows:
  * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
  *   global_math_functions_filtering_base<T>::type is a typedef for it.
  * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
  *
  * How it's used:
  * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
  * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
  * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
  * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
  * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
  *
  * How it's implemented:
  * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
  * the typename dummy by an integer template parameter, it doesn't work anymore!
  */

template<typename T, typename dummy = void>
struct global_math_functions_filtering_base
{
  typedef T type;
};

template<typename T> struct always_void { typedef void type; };

template<typename T>
struct global_math_functions_filtering_base
  <T,
   typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
  >
{
  typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
};

Don Gagne's avatar
Don Gagne committed
54 55
#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type
LM's avatar
LM committed
56 57 58 59 60

/****************************************************************************
* Implementation of real                                                 *
****************************************************************************/

Don Gagne's avatar
Don Gagne committed
61 62
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct real_default_impl
LM's avatar
LM committed
63 64 65 66 67 68 69 70
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    return x;
  }
};

Don Gagne's avatar
Don Gagne committed
71 72
template<typename Scalar>
struct real_default_impl<Scalar,true>
LM's avatar
LM committed
73
{
Don Gagne's avatar
Don Gagne committed
74 75
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
LM's avatar
LM committed
76 77 78 79 80 81
  {
    using std::real;
    return real(x);
  }
};

Don Gagne's avatar
Don Gagne committed
82 83
template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};

LM's avatar
LM committed
84 85 86 87 88 89 90 91 92 93 94
template<typename Scalar>
struct real_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};


/****************************************************************************
* Implementation of imag                                                 *
****************************************************************************/

Don Gagne's avatar
Don Gagne committed
95 96
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct imag_default_impl
LM's avatar
LM committed
97 98 99 100 101 102 103 104
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar&)
  {
    return RealScalar(0);
  }
};

Don Gagne's avatar
Don Gagne committed
105 106
template<typename Scalar>
struct imag_default_impl<Scalar,true>
LM's avatar
LM committed
107
{
Don Gagne's avatar
Don Gagne committed
108 109
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
LM's avatar
LM committed
110 111 112 113 114 115
  {
    using std::imag;
    return imag(x);
  }
};

Don Gagne's avatar
Don Gagne committed
116 117
template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};

LM's avatar
LM committed
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
template<typename Scalar>
struct imag_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of real_ref                                             *
****************************************************************************/

template<typename Scalar>
struct real_ref_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar& run(Scalar& x)
  {
    return reinterpret_cast<RealScalar*>(&x)[0];
  }
  static inline const RealScalar& run(const Scalar& x)
  {
    return reinterpret_cast<const RealScalar*>(&x)[0];
  }
};

template<typename Scalar>
struct real_ref_retval
{
  typedef typename NumTraits<Scalar>::Real & type;
};

/****************************************************************************
* Implementation of imag_ref                                             *
****************************************************************************/

template<typename Scalar, bool IsComplex>
struct imag_ref_default_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar& run(Scalar& x)
  {
    return reinterpret_cast<RealScalar*>(&x)[1];
  }
  static inline const RealScalar& run(const Scalar& x)
  {
    return reinterpret_cast<RealScalar*>(&x)[1];
  }
};

template<typename Scalar>
struct imag_ref_default_impl<Scalar, false>
{
  static inline Scalar run(Scalar&)
  {
    return Scalar(0);
  }
  static inline const Scalar run(const Scalar&)
  {
    return Scalar(0);
  }
};

template<typename Scalar>
struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};

template<typename Scalar>
struct imag_ref_retval
{
  typedef typename NumTraits<Scalar>::Real & type;
};

/****************************************************************************
* Implementation of conj                                                 *
****************************************************************************/

Don Gagne's avatar
Don Gagne committed
192
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
LM's avatar
LM committed
193 194 195 196 197 198 199 200
struct conj_impl
{
  static inline Scalar run(const Scalar& x)
  {
    return x;
  }
};

Don Gagne's avatar
Don Gagne committed
201 202
template<typename Scalar>
struct conj_impl<Scalar,true>
LM's avatar
LM committed
203
{
Don Gagne's avatar
Don Gagne committed
204
  static inline Scalar run(const Scalar& x)
LM's avatar
LM committed
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
  {
    using std::conj;
    return conj(x);
  }
};

template<typename Scalar>
struct conj_retval
{
  typedef Scalar type;
};

/****************************************************************************
* Implementation of abs2                                                 *
****************************************************************************/

template<typename Scalar>
struct abs2_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    return x*x;
  }
};

template<typename RealScalar>
struct abs2_impl<std::complex<RealScalar> >
{
  static inline RealScalar run(const std::complex<RealScalar>& x)
  {
Don Gagne's avatar
Don Gagne committed
236
    return real(x)*real(x) + imag(x)*imag(x);
LM's avatar
LM committed
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  }
};

template<typename Scalar>
struct abs2_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of norm1                                                *
****************************************************************************/

template<typename Scalar, bool IsComplex>
struct norm1_default_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
Don Gagne's avatar
Don Gagne committed
256
    using std::abs;
LM's avatar
LM committed
257 258 259 260 261 262 263 264 265
    return abs(real(x)) + abs(imag(x));
  }
};

template<typename Scalar>
struct norm1_default_impl<Scalar, false>
{
  static inline Scalar run(const Scalar& x)
  {
Don Gagne's avatar
Don Gagne committed
266
    using std::abs;
LM's avatar
LM committed
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    return abs(x);
  }
};

template<typename Scalar>
struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};

template<typename Scalar>
struct norm1_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of hypot                                                *
****************************************************************************/

template<typename Scalar>
struct hypot_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x, const Scalar& y)
  {
    using std::max;
    using std::min;
Don Gagne's avatar
Don Gagne committed
292 293
    using std::abs;
    using std::sqrt;
LM's avatar
LM committed
294 295
    RealScalar _x = abs(x);
    RealScalar _y = abs(y);
Don Gagne's avatar
Don Gagne committed
296
    RealScalar p = (max)(_x, _y);
297
    if(p==RealScalar(0)) return RealScalar(0);
Don Gagne's avatar
Don Gagne committed
298
    RealScalar q = (min)(_x, _y);
LM's avatar
LM committed
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    RealScalar qp = q/p;
    return p * sqrt(RealScalar(1) + qp*qp);
  }
};

template<typename Scalar>
struct hypot_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of cast                                                 *
****************************************************************************/

template<typename OldType, typename NewType>
struct cast_impl
{
  static inline NewType run(const OldType& x)
  {
    return static_cast<NewType>(x);
  }
};

// here, for once, we're plainly returning NewType: we don't want cast to do weird things.

template<typename OldType, typename NewType>
inline NewType cast(const OldType& x)
{
  return cast_impl<OldType, NewType>::run(x);
}

/****************************************************************************
Don Gagne's avatar
Don Gagne committed
332
* Implementation of atanh2                                                *
LM's avatar
LM committed
333 334 335
****************************************************************************/

template<typename Scalar, bool IsInteger>
Don Gagne's avatar
Don Gagne committed
336
struct atanh2_default_impl
LM's avatar
LM committed
337 338
{
  typedef Scalar retval;
Don Gagne's avatar
Don Gagne committed
339
  typedef typename NumTraits<Scalar>::Real RealScalar;
LM's avatar
LM committed
340 341
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
Don Gagne's avatar
Don Gagne committed
342 343 344 345 346 347 348 349
    using std::abs;
    using std::log;
    using std::sqrt;
    Scalar z = x / y;
    if (y == Scalar(0) || abs(z) > sqrt(NumTraits<RealScalar>::epsilon()))
      return RealScalar(0.5) * log((y + x) / (y - x));
    else
      return z + z*z*z / RealScalar(3);
LM's avatar
LM committed
350 351 352 353
  }
};

template<typename Scalar>
Don Gagne's avatar
Don Gagne committed
354
struct atanh2_default_impl<Scalar, true>
LM's avatar
LM committed
355 356 357 358 359 360 361 362 363
{
  static inline Scalar run(const Scalar&, const Scalar&)
  {
    EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
    return Scalar(0);
  }
};

template<typename Scalar>
Don Gagne's avatar
Don Gagne committed
364
struct atanh2_impl : atanh2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
LM's avatar
LM committed
365 366

template<typename Scalar>
Don Gagne's avatar
Don Gagne committed
367
struct atanh2_retval
LM's avatar
LM committed
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
{
  typedef Scalar type;
};

/****************************************************************************
* Implementation of pow                                                  *
****************************************************************************/

template<typename Scalar, bool IsInteger>
struct pow_default_impl
{
  typedef Scalar retval;
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    using std::pow;
    return pow(x, y);
  }
};

template<typename Scalar>
struct pow_default_impl<Scalar, true>
{
  static inline Scalar run(Scalar x, Scalar y)
  {
Don Gagne's avatar
Don Gagne committed
392
    Scalar res(1);
LM's avatar
LM committed
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0);
    if(y & 1) res *= x;
    y >>= 1;
    while(y)
    {
      x *= x;
      if(y&1) res *= x;
      y >>= 1;
    }
    return res;
  }
};

template<typename Scalar>
struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};

template<typename Scalar>
struct pow_retval
{
  typedef Scalar type;
};

/****************************************************************************
* Implementation of random                                               *
****************************************************************************/

template<typename Scalar,
         bool IsComplex,
         bool IsInteger>
struct random_default_impl {};

template<typename Scalar>
struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};

template<typename Scalar>
struct random_retval
{
  typedef Scalar type;
};

template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();

template<typename Scalar>
struct random_default_impl<Scalar, false, false>
{
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
  }
  static inline Scalar run()
  {
    return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
  }
};

enum {
  floor_log2_terminate,
  floor_log2_move_up,
  floor_log2_move_down,
  floor_log2_bogus
};

template<unsigned int n, int lower, int upper> struct floor_log2_selector
{
  enum { middle = (lower + upper) / 2,
         value = (upper <= lower + 1) ? int(floor_log2_terminate)
               : (n < (1 << middle)) ? int(floor_log2_move_down)
               : (n==0) ? int(floor_log2_bogus)
               : int(floor_log2_move_up)
  };
};

template<unsigned int n,
         int lower = 0,
         int upper = sizeof(unsigned int) * CHAR_BIT - 1,
         int selector = floor_log2_selector<n, lower, upper>::value>
struct floor_log2 {};

template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_move_down>
{
  enum { value = floor_log2<n, lower, floor_log2_selector<n, lower, upper>::middle>::value };
};

template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_move_up>
{
  enum { value = floor_log2<n, floor_log2_selector<n, lower, upper>::middle, upper>::value };
};

template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_terminate>
{
  enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
};

template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_bogus>
{
  // no value, error at compile time
};

template<typename Scalar>
struct random_default_impl<Scalar, false, true>
{
  typedef typename NumTraits<Scalar>::NonInteger NonInteger;

  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    return x + Scalar((NonInteger(y)-x+1) * std::rand() / (RAND_MAX + NonInteger(1)));
  }

  static inline Scalar run()
  {
#ifdef EIGEN_MAKING_DOCS
    return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
#else
    enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value,
           scalar_bits = sizeof(Scalar) * CHAR_BIT,
Don Gagne's avatar
Don Gagne committed
513 514
           shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
           offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
LM's avatar
LM committed
515
    };
Don Gagne's avatar
Don Gagne committed
516
    return Scalar((std::rand() >> shift) - offset);
LM's avatar
LM committed
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
#endif
  }
};

template<typename Scalar>
struct random_default_impl<Scalar, true, false>
{
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    return Scalar(random(real(x), real(y)),
                  random(imag(x), imag(y)));
  }
  static inline Scalar run()
  {
    typedef typename NumTraits<Scalar>::Real RealScalar;
    return Scalar(random<RealScalar>(), random<RealScalar>());
  }
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
{
  return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
{
  return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
}

Don Gagne's avatar
Don Gagne committed
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
} // end namespace internal

/****************************************************************************
* Generic math function                                                    *
****************************************************************************/

namespace numext {

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
}  

template<typename Scalar>
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
{
  return internal::real_ref_impl<Scalar>::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
}

template<typename Scalar>
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
{
  return internal::imag_ref_impl<Scalar>::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
{
  return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(atanh2, Scalar) atanh2(const Scalar& x, const Scalar& y)
{
  return EIGEN_MATHFUNC_IMPL(atanh2, Scalar)::run(x, y);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y)
{
  return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
}

// std::isfinite is non standard, so let's define our own version,
// even though it is not very efficient.
template<typename T> bool (isfinite)(const T& x)
{
  return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest();
}

} // end namespace numext

namespace internal {

LM's avatar
LM committed
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/****************************************************************************
* Implementation of fuzzy comparisons                                       *
****************************************************************************/

template<typename Scalar,
         bool IsComplex,
         bool IsInteger>
struct scalar_fuzzy_default_impl {};

template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, false>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template<typename OtherScalar>
  static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
  {
Don Gagne's avatar
Don Gagne committed
655
    using std::abs;
LM's avatar
LM committed
656 657 658 659 660
    return abs(x) <= abs(y) * prec;
  }
  static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
  {
    using std::min;
Don Gagne's avatar
Don Gagne committed
661 662
    using std::abs;
    return abs(x - y) <= (min)(abs(x), abs(y)) * prec;
LM's avatar
LM committed
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
  }
  static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
  {
    return x <= y || isApprox(x, y, prec);
  }
};

template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, true>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template<typename OtherScalar>
  static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
  {
    return x == Scalar(0);
  }
  static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
  {
    return x == y;
  }
  static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
  {
    return x <= y;
  }
};

template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, true, false>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template<typename OtherScalar>
  static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
  {
Don Gagne's avatar
Don Gagne committed
696
    return numext::abs2(x) <= numext::abs2(y) * prec * prec;
LM's avatar
LM committed
697 698 699 700
  }
  static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
  {
    using std::min;
Don Gagne's avatar
Don Gagne committed
701
    return numext::abs2(x - y) <= (min)(numext::abs2(x), numext::abs2(y)) * prec * prec;
LM's avatar
LM committed
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
  }
};

template<typename Scalar>
struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};

template<typename Scalar, typename OtherScalar>
inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
                                   typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
  return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
}

template<typename Scalar>
inline bool isApprox(const Scalar& x, const Scalar& y,
                          typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
  return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
}

template<typename Scalar>
inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
                                    typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
  return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
}

/******************************************
***  The special case of the  bool type ***
******************************************/

template<> struct random_impl<bool>
{
  static inline bool run()
  {
    return random<int>(0,1)==0 ? false : true;
  }
};

template<> struct scalar_fuzzy_impl<bool>
{
  typedef bool RealScalar;
  
  template<typename OtherScalar>
  static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
  {
    return !x;
  }
  
  static inline bool isApprox(bool x, bool y, bool)
  {
    return x == y;
  }

  static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
  {
    return (!x) || y;
  }
  
};

Don Gagne's avatar
Don Gagne committed
763
  
LM's avatar
LM committed
764 765
} // end namespace internal

Don Gagne's avatar
Don Gagne committed
766 767
} // end namespace Eigen

LM's avatar
LM committed
768
#endif // EIGEN_MATHFUNCTIONS_H