LLT.h 15.8 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_LLT_H
#define EIGEN_LLT_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen { 

LM's avatar
LM committed
15 16 17 18
namespace internal{
template<typename MatrixType, int UpLo> struct LLT_Traits;
}

Don Gagne's avatar
Don Gagne committed
19
/** \ingroup Cholesky_Module
LM's avatar
LM committed
20 21 22 23 24 25
  *
  * \class LLT
  *
  * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
  *
  * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
Don Gagne's avatar
Don Gagne committed
26 27
  * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
  *             The other triangular part won't be read.
LM's avatar
LM committed
28 29 30 31 32 33 34 35 36 37 38 39 40
  *
  * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
  * matrix A such that A = LL^* = U^*U, where L is lower triangular.
  *
  * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like  D^*D x = b,
  * for that purpose, we recommend the Cholesky decomposition without square root which is more stable
  * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
  * situations like generalised eigen problems with hermitian matrices.
  *
  * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
  * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
  * has a solution.
  *
Don Gagne's avatar
Don Gagne committed
41 42 43
  * Example: \include LLT_example.cpp
  * Output: \verbinclude LLT_example.out
  *    
LM's avatar
LM committed
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  * \sa MatrixBase::llt(), class LDLT
  */
 /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
  * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
  * the strict lower part does not have to store correct values.
  */
template<typename _MatrixType, int _UpLo> class LLT
{
  public:
    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef typename MatrixType::Index Index;

    enum {
      PacketSize = internal::packet_traits<Scalar>::size,
      AlignmentMask = int(PacketSize)-1,
      UpLo = _UpLo
    };

    typedef internal::LLT_Traits<MatrixType,UpLo> Traits;

    /**
      * \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via LLT::compute(const MatrixType&).
      */
    LLT() : m_matrix(), m_isInitialized(false) {}

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa LLT()
      */
    LLT(Index size) : m_matrix(size, size),
                    m_isInitialized(false) {}

    LLT(const MatrixType& matrix)
      : m_matrix(matrix.rows(), matrix.cols()),
        m_isInitialized(false)
    {
      compute(matrix);
    }

    /** \returns a view of the upper triangular matrix U */
    inline typename Traits::MatrixU matrixU() const
    {
      eigen_assert(m_isInitialized && "LLT is not initialized.");
      return Traits::getU(m_matrix);
    }

    /** \returns a view of the lower triangular matrix L */
    inline typename Traits::MatrixL matrixL() const
    {
      eigen_assert(m_isInitialized && "LLT is not initialized.");
      return Traits::getL(m_matrix);
    }

    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * Since this LLT class assumes anyway that the matrix A is invertible, the solution
      * theoretically exists and is unique regardless of b.
      *
      * Example: \include LLT_solve.cpp
      * Output: \verbinclude LLT_solve.out
      *
      * \sa solveInPlace(), MatrixBase::llt()
      */
    template<typename Rhs>
    inline const internal::solve_retval<LLT, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "LLT is not initialized.");
      eigen_assert(m_matrix.rows()==b.rows()
                && "LLT::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<LLT, Rhs>(*this, b.derived());
    }

    #ifdef EIGEN2_SUPPORT
    template<typename OtherDerived, typename ResultType>
    bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
    {
      *result = this->solve(b);
      return true;
    }
    
    bool isPositiveDefinite() const { return true; }
    #endif

    template<typename Derived>
    void solveInPlace(MatrixBase<Derived> &bAndX) const;

    LLT& compute(const MatrixType& matrix);

    /** \returns the LLT decomposition matrix
      *
      * TODO: document the storage layout
      */
    inline const MatrixType& matrixLLT() const
    {
      eigen_assert(m_isInitialized && "LLT is not initialized.");
      return m_matrix;
    }

    MatrixType reconstructedMatrix() const;


    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the matrix.appears to be negative.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "LLT is not initialized.");
      return m_info;
    }

    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }

Don Gagne's avatar
Don Gagne committed
173 174 175
    template<typename VectorType>
    LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);

LM's avatar
LM committed
176
  protected:
177 178 179 180 181 182
    
    static void check_template_parameters()
    {
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    }
    
LM's avatar
LM committed
183 184 185 186 187 188 189 190 191 192 193
    /** \internal
      * Used to compute and store L
      * The strict upper part is not used and even not initialized.
      */
    MatrixType m_matrix;
    bool m_isInitialized;
    ComputationInfo m_info;
};

namespace internal {

Don Gagne's avatar
Don Gagne committed
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
template<typename Scalar, int UpLo> struct llt_inplace;

template<typename MatrixType, typename VectorType>
static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
{
  using std::sqrt;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::ColXpr ColXpr;
  typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
  typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
  typedef Matrix<Scalar,Dynamic,1> TempVectorType;
  typedef typename TempVectorType::SegmentReturnType TempVecSegment;

  Index n = mat.cols();
  eigen_assert(mat.rows()==n && vec.size()==n);

  TempVectorType temp;

  if(sigma>0)
  {
    // This version is based on Givens rotations.
    // It is faster than the other one below, but only works for updates,
    // i.e., for sigma > 0
    temp = sqrt(sigma) * vec;

    for(Index i=0; i<n; ++i)
    {
      JacobiRotation<Scalar> g;
      g.makeGivens(mat(i,i), -temp(i), &mat(i,i));

      Index rs = n-i-1;
      if(rs>0)
      {
        ColXprSegment x(mat.col(i).tail(rs));
        TempVecSegment y(temp.tail(rs));
        apply_rotation_in_the_plane(x, y, g);
      }
    }
  }
  else
  {
    temp = vec;
    RealScalar beta = 1;
    for(Index j=0; j<n; ++j)
    {
      RealScalar Ljj = numext::real(mat.coeff(j,j));
      RealScalar dj = numext::abs2(Ljj);
      Scalar wj = temp.coeff(j);
      RealScalar swj2 = sigma*numext::abs2(wj);
      RealScalar gamma = dj*beta + swj2;

      RealScalar x = dj + swj2/beta;
      if (x<=RealScalar(0))
        return j;
      RealScalar nLjj = sqrt(x);
      mat.coeffRef(j,j) = nLjj;
      beta += swj2/dj;

      // Update the terms of L
      Index rs = n-j-1;
      if(rs)
      {
        temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
        if(gamma != 0)
          mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
      }
    }
  }
  return -1;
}
LM's avatar
LM committed
266

Don Gagne's avatar
Don Gagne committed
267
template<typename Scalar> struct llt_inplace<Scalar, Lower>
LM's avatar
LM committed
268
{
Don Gagne's avatar
Don Gagne committed
269
  typedef typename NumTraits<Scalar>::Real RealScalar;
LM's avatar
LM committed
270 271 272
  template<typename MatrixType>
  static typename MatrixType::Index unblocked(MatrixType& mat)
  {
Don Gagne's avatar
Don Gagne committed
273
    using std::sqrt;
LM's avatar
LM committed
274 275 276 277 278 279 280 281 282 283 284 285
    typedef typename MatrixType::Index Index;
    
    eigen_assert(mat.rows()==mat.cols());
    const Index size = mat.rows();
    for(Index k = 0; k < size; ++k)
    {
      Index rs = size-k-1; // remaining size

      Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
      Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
      Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);

Don Gagne's avatar
Don Gagne committed
286
      RealScalar x = numext::real(mat.coeff(k,k));
LM's avatar
LM committed
287 288 289 290 291
      if (k>0) x -= A10.squaredNorm();
      if (x<=RealScalar(0))
        return k;
      mat.coeffRef(k,k) = x = sqrt(x);
      if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
292
      if (rs>0) A21 /= x;
LM's avatar
LM committed
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    }
    return -1;
  }

  template<typename MatrixType>
  static typename MatrixType::Index blocked(MatrixType& m)
  {
    typedef typename MatrixType::Index Index;
    eigen_assert(m.rows()==m.cols());
    Index size = m.rows();
    if(size<32)
      return unblocked(m);

    Index blockSize = size/8;
    blockSize = (blockSize/16)*16;
Don Gagne's avatar
Don Gagne committed
308
    blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
LM's avatar
LM committed
309 310 311 312 313 314 315

    for (Index k=0; k<size; k+=blockSize)
    {
      // partition the matrix:
      //       A00 |  -  |  -
      // lu  = A10 | A11 |  -
      //       A20 | A21 | A22
Don Gagne's avatar
Don Gagne committed
316
      Index bs = (std::min)(blockSize, size-k);
LM's avatar
LM committed
317 318 319 320 321 322 323 324 325 326 327 328 329
      Index rs = size - k - bs;
      Block<MatrixType,Dynamic,Dynamic> A11(m,k,   k,   bs,bs);
      Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k,   rs,bs);
      Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);

      Index ret;
      if((ret=unblocked(A11))>=0) return k+ret;
      if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
      if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck
    }
    return -1;
  }

Don Gagne's avatar
Don Gagne committed
330 331 332 333 334 335 336 337
  template<typename MatrixType, typename VectorType>
  static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
  {
    return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
  }
};
  
template<typename Scalar> struct llt_inplace<Scalar, Upper>
LM's avatar
LM committed
338
{
Don Gagne's avatar
Don Gagne committed
339 340
  typedef typename NumTraits<Scalar>::Real RealScalar;

LM's avatar
LM committed
341 342 343 344
  template<typename MatrixType>
  static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat)
  {
    Transpose<MatrixType> matt(mat);
Don Gagne's avatar
Don Gagne committed
345
    return llt_inplace<Scalar, Lower>::unblocked(matt);
LM's avatar
LM committed
346 347 348 349 350
  }
  template<typename MatrixType>
  static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat)
  {
    Transpose<MatrixType> matt(mat);
Don Gagne's avatar
Don Gagne committed
351 352 353 354 355 356 357
    return llt_inplace<Scalar, Lower>::blocked(matt);
  }
  template<typename MatrixType, typename VectorType>
  static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
  {
    Transpose<MatrixType> matt(mat);
    return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
LM's avatar
LM committed
358 359 360 361 362
  }
};

template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
{
Don Gagne's avatar
Don Gagne committed
363 364 365 366
  typedef const TriangularView<const MatrixType, Lower> MatrixL;
  typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
  static inline MatrixL getL(const MatrixType& m) { return m; }
  static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
LM's avatar
LM committed
367
  static bool inplace_decomposition(MatrixType& m)
Don Gagne's avatar
Don Gagne committed
368
  { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
LM's avatar
LM committed
369 370 371 372
};

template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
{
Don Gagne's avatar
Don Gagne committed
373 374 375 376
  typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
  typedef const TriangularView<const MatrixType, Upper> MatrixU;
  static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
  static inline MatrixU getU(const MatrixType& m) { return m; }
LM's avatar
LM committed
377
  static bool inplace_decomposition(MatrixType& m)
Don Gagne's avatar
Don Gagne committed
378
  { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
LM's avatar
LM committed
379 380 381 382 383 384 385
};

} // end namespace internal

/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
  *
  * \returns a reference to *this
Don Gagne's avatar
Don Gagne committed
386 387 388
  *
  * Example: \include TutorialLinAlgComputeTwice.cpp
  * Output: \verbinclude TutorialLinAlgComputeTwice.out
LM's avatar
LM committed
389 390 391 392
  */
template<typename MatrixType, int _UpLo>
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
393 394
  check_template_parameters();
  
Don Gagne's avatar
Don Gagne committed
395
  eigen_assert(a.rows()==a.cols());
LM's avatar
LM committed
396 397 398 399 400 401 402 403 404 405 406
  const Index size = a.rows();
  m_matrix.resize(size, size);
  m_matrix = a;

  m_isInitialized = true;
  bool ok = Traits::inplace_decomposition(m_matrix);
  m_info = ok ? Success : NumericalIssue;

  return *this;
}

Don Gagne's avatar
Don Gagne committed
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/** Performs a rank one update (or dowdate) of the current decomposition.
  * If A = LL^* before the rank one update,
  * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
  * of same dimension.
  */
template<typename _MatrixType, int _UpLo>
template<typename VectorType>
LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
{
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
  eigen_assert(v.size()==m_matrix.cols());
  eigen_assert(m_isInitialized);
  if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
    m_info = NumericalIssue;
  else
    m_info = Success;

  return *this;
}
    
LM's avatar
LM committed
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
namespace internal {
template<typename _MatrixType, int UpLo, typename Rhs>
struct solve_retval<LLT<_MatrixType, UpLo>, Rhs>
  : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs>
{
  typedef LLT<_MatrixType,UpLo> LLTType;
  EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dst = rhs();
    dec().solveInPlace(dst);
  }
};
}

/** \internal use x = llt_object.solve(x);
  * 
  * This is the \em in-place version of solve().
  *
  * \param bAndX represents both the right-hand side matrix b and result x.
  *
  * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
  *
  * This version avoids a copy when the right hand side matrix b is not
  * needed anymore.
  *
  * \sa LLT::solve(), MatrixBase::llt()
  */
template<typename MatrixType, int _UpLo>
template<typename Derived>
void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
  eigen_assert(m_isInitialized && "LLT is not initialized.");
  eigen_assert(m_matrix.rows()==bAndX.rows());
  matrixL().solveInPlace(bAndX);
  matrixU().solveInPlace(bAndX);
}

/** \returns the matrix represented by the decomposition,
 * i.e., it returns the product: L L^*.
 * This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
  eigen_assert(m_isInitialized && "LLT is not initialized.");
  return matrixL() * matrixL().adjoint().toDenseMatrix();
}

/** \cholesky_module
  * \returns the LLT decomposition of \c *this
  */
template<typename Derived>
inline const LLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::llt() const
{
  return LLT<PlainObject>(derived());
}

/** \cholesky_module
  * \returns the LLT decomposition of \c *this
  */
template<typename MatrixType, unsigned int UpLo>
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::llt() const
{
  return LLT<PlainObject,UpLo>(m_matrix);
}

Don Gagne's avatar
Don Gagne committed
496 497
} // end namespace Eigen

LM's avatar
LM committed
498
#endif // EIGEN_LLT_H