SelfadjointMatrixMatrix.h 14.9 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_H
#define EIGEN_SELFADJOINT_MATRIX_MATRIX_H

namespace internal {

// pack a selfadjoint block diagonal for use with the gebp_kernel
template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder>
struct symm_pack_lhs
{
  template<int BlockRows> inline
  void pack(Scalar* blockA, const const_blas_data_mapper<Scalar,Index,StorageOrder>& lhs, Index cols, Index i, Index& count)
  {
    // normal copy
    for(Index k=0; k<i; k++)
      for(Index w=0; w<BlockRows; w++)
        blockA[count++] = lhs(i+w,k);           // normal
    // symmetric copy
    Index h = 0;
    for(Index k=i; k<i+BlockRows; k++)
    {
      for(Index w=0; w<h; w++)
        blockA[count++] = conj(lhs(k, i+w)); // transposed

      blockA[count++] = real(lhs(k,k));   // real (diagonal)

      for(Index w=h+1; w<BlockRows; w++)
        blockA[count++] = lhs(i+w, k);          // normal
      ++h;
    }
    // transposed copy
    for(Index k=i+BlockRows; k<cols; k++)
      for(Index w=0; w<BlockRows; w++)
        blockA[count++] = conj(lhs(k, i+w)); // transposed
  }
  void operator()(Scalar* blockA, const Scalar* _lhs, Index lhsStride, Index cols, Index rows)
  {
    const_blas_data_mapper<Scalar,Index,StorageOrder> lhs(_lhs,lhsStride);
    Index count = 0;
    Index peeled_mc = (rows/Pack1)*Pack1;
    for(Index i=0; i<peeled_mc; i+=Pack1)
    {
      pack<Pack1>(blockA, lhs, cols, i, count);
    }

    if(rows-peeled_mc>=Pack2)
    {
      pack<Pack2>(blockA, lhs, cols, peeled_mc, count);
      peeled_mc += Pack2;
    }

    // do the same with mr==1
    for(Index i=peeled_mc; i<rows; i++)
    {
      for(Index k=0; k<i; k++)
        blockA[count++] = lhs(i, k);              // normal

      blockA[count++] = real(lhs(i, i));       // real (diagonal)

      for(Index k=i+1; k<cols; k++)
        blockA[count++] = conj(lhs(k, i));     // transposed
    }
  }
};

template<typename Scalar, typename Index, int nr, int StorageOrder>
struct symm_pack_rhs
{
  enum { PacketSize = packet_traits<Scalar>::size };
  void operator()(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
  {
    Index end_k = k2 + rows;
    Index count = 0;
    const_blas_data_mapper<Scalar,Index,StorageOrder> rhs(_rhs,rhsStride);
    Index packet_cols = (cols/nr)*nr;

    // first part: normal case
    for(Index j2=0; j2<k2; j2+=nr)
    {
      for(Index k=k2; k<end_k; k++)
      {
        blockB[count+0] = rhs(k,j2+0);
        blockB[count+1] = rhs(k,j2+1);
        if (nr==4)
        {
          blockB[count+2] = rhs(k,j2+2);
          blockB[count+3] = rhs(k,j2+3);
        }
        count += nr;
      }
    }

    // second part: diagonal block
    for(Index j2=k2; j2<std::min(k2+rows,packet_cols); j2+=nr)
    {
      // again we can split vertically in three different parts (transpose, symmetric, normal)
      // transpose
      for(Index k=k2; k<j2; k++)
      {
        blockB[count+0] = conj(rhs(j2+0,k));
        blockB[count+1] = conj(rhs(j2+1,k));
        if (nr==4)
        {
          blockB[count+2] = conj(rhs(j2+2,k));
          blockB[count+3] = conj(rhs(j2+3,k));
        }
        count += nr;
      }
      // symmetric
      Index h = 0;
      for(Index k=j2; k<j2+nr; k++)
      {
        // normal
        for (Index w=0 ; w<h; ++w)
          blockB[count+w] = rhs(k,j2+w);

        blockB[count+h] = real(rhs(k,k));

        // transpose
        for (Index w=h+1 ; w<nr; ++w)
          blockB[count+w] = conj(rhs(j2+w,k));
        count += nr;
        ++h;
      }
      // normal
      for(Index k=j2+nr; k<end_k; k++)
      {
        blockB[count+0] = rhs(k,j2+0);
        blockB[count+1] = rhs(k,j2+1);
        if (nr==4)
        {
          blockB[count+2] = rhs(k,j2+2);
          blockB[count+3] = rhs(k,j2+3);
        }
        count += nr;
      }
    }

    // third part: transposed
    for(Index j2=k2+rows; j2<packet_cols; j2+=nr)
    {
      for(Index k=k2; k<end_k; k++)
      {
        blockB[count+0] = conj(rhs(j2+0,k));
        blockB[count+1] = conj(rhs(j2+1,k));
        if (nr==4)
        {
          blockB[count+2] = conj(rhs(j2+2,k));
          blockB[count+3] = conj(rhs(j2+3,k));
        }
        count += nr;
      }
    }

    // copy the remaining columns one at a time (=> the same with nr==1)
    for(Index j2=packet_cols; j2<cols; ++j2)
    {
      // transpose
      Index half = std::min(end_k,j2);
      for(Index k=k2; k<half; k++)
      {
        blockB[count] = conj(rhs(j2,k));
        count += 1;
      }

      if(half==j2 && half<k2+rows)
      {
        blockB[count] = real(rhs(j2,j2));
        count += 1;
      }
      else
        half--;

      // normal
      for(Index k=half+1; k<k2+rows; k++)
      {
        blockB[count] = rhs(k,j2);
        count += 1;
      }
    }
  }
};

/* Optimized selfadjoint matrix * matrix (_SYMM) product built on top of
 * the general matrix matrix product.
 */
template <typename Scalar, typename Index,
          int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
          int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs,
          int ResStorageOrder>
struct product_selfadjoint_matrix;

template <typename Scalar, typename Index,
          int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
          int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs>
struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,LhsSelfAdjoint,ConjugateLhs, RhsStorageOrder,RhsSelfAdjoint,ConjugateRhs,RowMajor>
{

  static EIGEN_STRONG_INLINE void run(
    Index rows, Index cols,
    const Scalar* lhs, Index lhsStride,
    const Scalar* rhs, Index rhsStride,
    Scalar* res,       Index resStride,
    Scalar alpha)
  {
    product_selfadjoint_matrix<Scalar, Index,
      EIGEN_LOGICAL_XOR(RhsSelfAdjoint,RhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
      RhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsSelfAdjoint,ConjugateRhs),
      EIGEN_LOGICAL_XOR(LhsSelfAdjoint,LhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
      LhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsSelfAdjoint,ConjugateLhs),
      ColMajor>
      ::run(cols, rows,  rhs, rhsStride,  lhs, lhsStride,  res, resStride,  alpha);
  }
};

template <typename Scalar, typename Index,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs>
struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor>
{

  static EIGEN_DONT_INLINE void run(
    Index rows, Index cols,
    const Scalar* _lhs, Index lhsStride,
    const Scalar* _rhs, Index rhsStride,
    Scalar* res,        Index resStride,
    Scalar alpha)
  {
    Index size = rows;

    const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
    const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);

    typedef gebp_traits<Scalar,Scalar> Traits;

    Index kc = size;  // cache block size along the K direction
    Index mc = rows;  // cache block size along the M direction
    Index nc = cols;  // cache block size along the N direction
    computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
    // kc must smaller than mc
    kc = std::min(kc,mc);

    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
    std::size_t sizeB = sizeW + kc*cols;
    ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
    ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);
    Scalar* blockB = allocatedBlockB + sizeW;

    gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
    symm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
    gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
    gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder==RowMajor?ColMajor:RowMajor, true> pack_lhs_transposed;

    for(Index k2=0; k2<size; k2+=kc)
    {
      const Index actual_kc = std::min(k2+kc,size)-k2;

      // we have selected one row panel of rhs and one column panel of lhs
      // pack rhs's panel into a sequential chunk of memory
      // and expand each coeff to a constant packet for further reuse
      pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);

      // the select lhs's panel has to be split in three different parts:
      //  1 - the transposed panel above the diagonal block => transposed packed copy
      //  2 - the diagonal block => special packed copy
      //  3 - the panel below the diagonal block => generic packed copy
      for(Index i2=0; i2<k2; i2+=mc)
      {
        const Index actual_mc = std::min(i2+mc,k2)-i2;
        // transposed packed copy
        pack_lhs_transposed(blockA, &lhs(k2, i2), lhsStride, actual_kc, actual_mc);

        gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
      }
      // the block diagonal
      {
        const Index actual_mc = std::min(k2+kc,size)-k2;
        // symmetric packed copy
        pack_lhs(blockA, &lhs(k2,k2), lhsStride, actual_kc, actual_mc);

        gebp_kernel(res+k2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
      }

      for(Index i2=k2+kc; i2<size; i2+=mc)
      {
        const Index actual_mc = std::min(i2+mc,size)-i2;
        gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder,false>()
          (blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);

        gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
      }
    }
  }
};

// matrix * selfadjoint product
template <typename Scalar, typename Index,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs>
struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor>
{

  static EIGEN_DONT_INLINE void run(
    Index rows, Index cols,
    const Scalar* _lhs, Index lhsStride,
    const Scalar* _rhs, Index rhsStride,
    Scalar* res,        Index resStride,
    Scalar alpha)
  {
    Index size = cols;

    const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);

    typedef gebp_traits<Scalar,Scalar> Traits;

    Index kc = size; // cache block size along the K direction
    Index mc = rows;  // cache block size along the M direction
    Index nc = cols;  // cache block size along the N direction
    computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
    std::size_t sizeB = sizeW + kc*cols;
    ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
    ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);
    Scalar* blockB = allocatedBlockB + sizeW;

    gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
    gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
    symm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;

    for(Index k2=0; k2<size; k2+=kc)
    {
      const Index actual_kc = std::min(k2+kc,size)-k2;

      pack_rhs(blockB, _rhs, rhsStride, actual_kc, cols, k2);

      // => GEPP
      for(Index i2=0; i2<rows; i2+=mc)
      {
        const Index actual_mc = std::min(i2+mc,rows)-i2;
        pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);

        gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
      }
    }
  }
};

} // end namespace internal

/***************************************************************************
* Wrapper to product_selfadjoint_matrix
***************************************************************************/

namespace internal {
template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false> >
  : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs> >
{};
}

template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>
  : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)

  SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

  enum {
    LhsIsUpper = (LhsMode&(Upper|Lower))==Upper,
    LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint,
    RhsIsUpper = (RhsMode&(Upper|Lower))==Upper,
    RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint
  };

  template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
  {
    eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());

    const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
    const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
                               * RhsBlasTraits::extractScalarFactor(m_rhs);

    internal::product_selfadjoint_matrix<Scalar, Index,
      EIGEN_LOGICAL_XOR(LhsIsUpper,
                        internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint,
      NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)),
      EIGEN_LOGICAL_XOR(RhsIsUpper,
                        internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint,
      NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)),
      internal::traits<Dest>::Flags&RowMajorBit  ? RowMajor : ColMajor>
      ::run(
        lhs.rows(), rhs.cols(),                 // sizes
        &lhs.coeffRef(0,0),    lhs.outerStride(),  // lhs info
        &rhs.coeffRef(0,0),    rhs.outerStride(),  // rhs info
        &dst.coeffRef(0,0), dst.outerStride(),  // result info
        actualAlpha                             // alpha
      );
  }
};

#endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H