SparseMatrix.h 21.3 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H

/** \ingroup Sparse_Module
  *
  * \class SparseMatrix
  *
  * \brief The main sparse matrix class
  *
  * This class implements a sparse matrix using the very common compressed row/column storage
  * scheme.
  *
  * \tparam _Scalar the scalar type, i.e. the type of the coefficients
  * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
  *                 is RowMajor. The default is 0 which means column-major.
  * \tparam _Index the type of the indices. Default is \c int.
  *
  * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
  */

namespace internal {
template<typename _Scalar, int _Options, typename _Index>
struct traits<SparseMatrix<_Scalar, _Options, _Index> >
{
  typedef _Scalar Scalar;
  typedef _Index Index;
  typedef Sparse StorageKind;
  typedef MatrixXpr XprKind;
  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = Dynamic,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = Dynamic,
    Flags = _Options | NestByRefBit | LvalueBit,
    CoeffReadCost = NumTraits<Scalar>::ReadCost,
    SupportedAccessPatterns = InnerRandomAccessPattern
  };
};

} // end namespace internal

template<typename _Scalar, int _Options, typename _Index>
class SparseMatrix
  : public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> >
{
  public:
    EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
//     using Base::operator=;
    EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=)
    EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=)
    // FIXME: why are these operator already alvailable ???
    // EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, *=)
    // EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, /=)

    typedef MappedSparseMatrix<Scalar,Flags> Map;
    using Base::IsRowMajor;
    typedef CompressedStorage<Scalar,Index> Storage;
    enum {
      Options = _Options
    };

  protected:

    typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;

    Index m_outerSize;
    Index m_innerSize;
    Index* m_outerIndex;
    CompressedStorage<Scalar,Index> m_data;

  public:

    inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
    inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }

    inline Index innerSize() const { return m_innerSize; }
    inline Index outerSize() const { return m_outerSize; }
    inline Index innerNonZeros(Index j) const { return m_outerIndex[j+1]-m_outerIndex[j]; }

    inline const Scalar* _valuePtr() const { return &m_data.value(0); }
    inline Scalar* _valuePtr() { return &m_data.value(0); }

    inline const Index* _innerIndexPtr() const { return &m_data.index(0); }
    inline Index* _innerIndexPtr() { return &m_data.index(0); }

    inline const Index* _outerIndexPtr() const { return m_outerIndex; }
    inline Index* _outerIndexPtr() { return m_outerIndex; }

    inline Storage& data() { return m_data; }
    inline const Storage& data() const { return m_data; }

    inline Scalar coeff(Index row, Index col) const
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;
      return m_data.atInRange(m_outerIndex[outer], m_outerIndex[outer+1], inner);
    }

    inline Scalar& coeffRef(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      Index start = m_outerIndex[outer];
      Index end = m_outerIndex[outer+1];
      eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
      eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient");
      const Index p = m_data.searchLowerIndex(start,end-1,inner);
      eigen_assert((p<end) && (m_data.index(p)==inner) && "coeffRef cannot be called on a zero coefficient");
      return m_data.value(p);
    }

  public:

    class InnerIterator;

    /** Removes all non zeros */
    inline void setZero()
    {
      m_data.clear();
      memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
    }

    /** \returns the number of non zero coefficients */
    inline Index nonZeros() const  { return static_cast<Index>(m_data.size()); }

    /** Preallocates \a reserveSize non zeros */
    inline void reserve(Index reserveSize)
    {
      m_data.reserve(reserveSize);
    }

    //--- low level purely coherent filling ---

    /** \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
      * - the nonzero does not already exist
      * - the new coefficient is the last one according to the storage order
      *
      * Before filling a given inner vector you must call the statVec(Index) function.
      *
      * After an insertion session, you should call the finalize() function.
      *
      * \sa insert, insertBackByOuterInner, startVec */
    inline Scalar& insertBack(Index row, Index col)
    {
      return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
    }

    /** \sa insertBack, startVec */
    inline Scalar& insertBackByOuterInner(Index outer, Index inner)
    {
      eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
      eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];
      m_data.append(0, inner);
      return m_data.value(p);
    }

    /** \warning use it only if you know what you are doing */
    inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
    {
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];
      m_data.append(0, inner);
      return m_data.value(p);
    }

    /** \sa insertBack, insertBackByOuterInner */
    inline void startVec(Index outer)
    {
      eigen_assert(m_outerIndex[outer]==int(m_data.size()) && "You must call startVec for each inner vector sequentially");
      eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
      m_outerIndex[outer+1] = m_outerIndex[outer];
    }

    //---

    /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
      * The non zero coefficient must \b not already exist.
      *
      * \warning This function can be extremely slow if the non zero coefficients
      * are not inserted in a coherent order.
      *
      * After an insertion session, you should call the finalize() function.
      */
    EIGEN_DONT_INLINE Scalar& insert(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      Index previousOuter = outer;
      if (m_outerIndex[outer+1]==0)
      {
        // we start a new inner vector
        while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
        {
          m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
          --previousOuter;
        }
        m_outerIndex[outer+1] = m_outerIndex[outer];
      }

      // here we have to handle the tricky case where the outerIndex array
      // starts with: [ 0 0 0 0 0 1 ...] and we are inserting in, e.g.,
      // the 2nd inner vector...
      bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
                    && (size_t(m_outerIndex[outer+1]) == m_data.size());

      size_t startId = m_outerIndex[outer];
      // FIXME let's make sure sizeof(long int) == sizeof(size_t)
      size_t p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];

      float reallocRatio = 1;
      if (m_data.allocatedSize()<=m_data.size())
      {
        // if there is no preallocated memory, let's reserve a minimum of 32 elements
        if (m_data.size()==0)
        {
          m_data.reserve(32);
        }
        else
        {
          // we need to reallocate the data, to reduce multiple reallocations
          // we use a smart resize algorithm based on the current filling ratio
          // in addition, we use float to avoid integers overflows
          float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
          reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
          // furthermore we bound the realloc ratio to:
          //   1) reduce multiple minor realloc when the matrix is almost filled
          //   2) avoid to allocate too much memory when the matrix is almost empty
          reallocRatio = std::min(std::max(reallocRatio,1.5f),8.f);
        }
      }
      m_data.resize(m_data.size()+1,reallocRatio);

      if (!isLastVec)
      {
        if (previousOuter==-1)
        {
          // oops wrong guess.
          // let's correct the outer offsets
          for (Index k=0; k<=(outer+1); ++k)
            m_outerIndex[k] = 0;
          Index k=outer+1;
          while(m_outerIndex[k]==0)
            m_outerIndex[k++] = 1;
          while (k<=m_outerSize && m_outerIndex[k]!=0)
            m_outerIndex[k++]++;
          p = 0;
          --k;
          k = m_outerIndex[k]-1;
          while (k>0)
          {
            m_data.index(k) = m_data.index(k-1);
            m_data.value(k) = m_data.value(k-1);
            k--;
          }
        }
        else
        {
          // we are not inserting into the last inner vec
          // update outer indices:
          Index j = outer+2;
          while (j<=m_outerSize && m_outerIndex[j]!=0)
            m_outerIndex[j++]++;
          --j;
          // shift data of last vecs:
          Index k = m_outerIndex[j]-1;
          while (k>=Index(p))
          {
            m_data.index(k) = m_data.index(k-1);
            m_data.value(k) = m_data.value(k-1);
            k--;
          }
        }
      }

      while ( (p > startId) && (m_data.index(p-1) > inner) )
      {
        m_data.index(p) = m_data.index(p-1);
        m_data.value(p) = m_data.value(p-1);
        --p;
      }

      m_data.index(p) = inner;
      return (m_data.value(p) = 0);
    }




    /** Must be called after inserting a set of non zero entries.
      */
    inline void finalize()
    {
      Index size = static_cast<Index>(m_data.size());
      Index i = m_outerSize;
      // find the last filled column
      while (i>=0 && m_outerIndex[i]==0)
        --i;
      ++i;
      while (i<=m_outerSize)
      {
        m_outerIndex[i] = size;
        ++i;
      }
    }

    /** Suppress all nonzeros which are smaller than \a reference under the tolerence \a epsilon */
    void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
    {
      prune(default_prunning_func(reference,epsilon));
    }
    
    /** Suppress all nonzeros which do not satisfy the predicate \a keep.
      * The functor type \a KeepFunc must implement the following function:
      * \code
      * bool operator() (const Index& row, const Index& col, const Scalar& value) const;
      * \endcode
      * \sa prune(Scalar,RealScalar)
      */
    template<typename KeepFunc>
    void prune(const KeepFunc& keep = KeepFunc())
    {
      Index k = 0;
      for(Index j=0; j<m_outerSize; ++j)
      {
        Index previousStart = m_outerIndex[j];
        m_outerIndex[j] = k;
        Index end = m_outerIndex[j+1];
        for(Index i=previousStart; i<end; ++i)
        {
          if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
          {
            m_data.value(k) = m_data.value(i);
            m_data.index(k) = m_data.index(i);
            ++k;
          }
        }
      }
      m_outerIndex[m_outerSize] = k;
      m_data.resize(k,0);
    }

    /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero
      * \sa resizeNonZeros(Index), reserve(), setZero()
      */
    void resize(Index rows, Index cols)
    {
      const Index outerSize = IsRowMajor ? rows : cols;
      m_innerSize = IsRowMajor ? cols : rows;
      m_data.clear();
      if (m_outerSize != outerSize || m_outerSize==0)
      {
        delete[] m_outerIndex;
        m_outerIndex = new Index [outerSize+1];
        m_outerSize = outerSize;
      }
      memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
    }

    /** Low level API
      * Resize the nonzero vector to \a size */
    void resizeNonZeros(Index size)
    {
      m_data.resize(size);
    }

    /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
    inline SparseMatrix()
      : m_outerSize(-1), m_innerSize(0), m_outerIndex(0)
    {
      resize(0, 0);
    }

    /** Constructs a \a rows \c x \a cols empty matrix */
    inline SparseMatrix(Index rows, Index cols)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0)
    {
      resize(rows, cols);
    }

    /** Constructs a sparse matrix from the sparse expression \a other */
    template<typename OtherDerived>
    inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0)
    {
      *this = other.derived();
    }

    /** Copy constructor */
    inline SparseMatrix(const SparseMatrix& other)
      : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0)
    {
      *this = other.derived();
    }

    /** Swap the content of two sparse matrices of same type (optimization) */
    inline void swap(SparseMatrix& other)
    {
      //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
      std::swap(m_outerIndex, other.m_outerIndex);
      std::swap(m_innerSize, other.m_innerSize);
      std::swap(m_outerSize, other.m_outerSize);
      m_data.swap(other.m_data);
    }

    inline SparseMatrix& operator=(const SparseMatrix& other)
    {
//       std::cout << "SparseMatrix& operator=(const SparseMatrix& other)\n";
      if (other.isRValue())
      {
        swap(other.const_cast_derived());
      }
      else
      {
        resize(other.rows(), other.cols());
        memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index));
        m_data = other.m_data;
      }
      return *this;
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename Lhs, typename Rhs>
    inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
    { return Base::operator=(product); }
    
    template<typename OtherDerived>
    inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other)
    { return Base::operator=(other); }
    
    template<typename OtherDerived>
    inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
    { return Base::operator=(other); }
    #endif

    template<typename OtherDerived>
    EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
    {
      const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
      if (needToTranspose)
      {
        // two passes algorithm:
        //  1 - compute the number of coeffs per dest inner vector
        //  2 - do the actual copy/eval
        // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
        typedef typename internal::nested<OtherDerived,2>::type OtherCopy;
        typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
        OtherCopy otherCopy(other.derived());

        resize(other.rows(), other.cols());
        Eigen::Map<Matrix<Index, Dynamic, 1> > (m_outerIndex,outerSize()).setZero();
        // pass 1
        // FIXME the above copy could be merged with that pass
        for (Index j=0; j<otherCopy.outerSize(); ++j)
          for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
            ++m_outerIndex[it.index()];

        // prefix sum
        Index count = 0;
        VectorXi positions(outerSize());
        for (Index j=0; j<outerSize(); ++j)
        {
          Index tmp = m_outerIndex[j];
          m_outerIndex[j] = count;
          positions[j] = count;
          count += tmp;
        }
        m_outerIndex[outerSize()] = count;
        // alloc
        m_data.resize(count);
        // pass 2
        for (Index j=0; j<otherCopy.outerSize(); ++j)
        {
          for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
          {
            Index pos = positions[it.index()]++;
            m_data.index(pos) = j;
            m_data.value(pos) = it.value();
          }
        }
        return *this;
      }
      else
      {
        // there is no special optimization
        return SparseMatrixBase<SparseMatrix>::operator=(other.derived());
      }
    }

    friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
    {
      EIGEN_DBG_SPARSE(
        s << "Nonzero entries:\n";
        for (Index i=0; i<m.nonZeros(); ++i)
        {
          s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
        }
        s << std::endl;
        s << std::endl;
        s << "Column pointers:\n";
        for (Index i=0; i<m.outerSize(); ++i)
        {
          s << m.m_outerIndex[i] << " ";
        }
        s << " $" << std::endl;
        s << std::endl;
      );
      s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
      return s;
    }

    /** Destructor */
    inline ~SparseMatrix()
    {
      delete[] m_outerIndex;
    }

    /** Overloaded for performance */
    Scalar sum() const;

  public:

    /** \deprecated use setZero() and reserve()
      * Initializes the filling process of \c *this.
      * \param reserveSize approximate number of nonzeros
      * Note that the matrix \c *this is zero-ed.
      */
    EIGEN_DEPRECATED void startFill(Index reserveSize = 1000)
    {
      setZero();
      m_data.reserve(reserveSize);
    }

    /** \deprecated use insert()
      * Like fill() but with random inner coordinates.
      */
    EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col)
    {
      return insert(row,col);
    }

    /** \deprecated use insert()
      */
    EIGEN_DEPRECATED Scalar& fill(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      if (m_outerIndex[outer+1]==0)
      {
        // we start a new inner vector
        Index i = outer;
        while (i>=0 && m_outerIndex[i]==0)
        {
          m_outerIndex[i] = m_data.size();
          --i;
        }
        m_outerIndex[outer+1] = m_outerIndex[outer];
      }
      else
      {
        eigen_assert(m_data.index(m_data.size()-1)<inner && "wrong sorted insertion");
      }
//       std::cerr << size_t(m_outerIndex[outer+1]) << " == " << m_data.size() << "\n";
      assert(size_t(m_outerIndex[outer+1]) == m_data.size());
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];

      m_data.append(0, inner);
      return m_data.value(p);
    }

    /** \deprecated use finalize */
    EIGEN_DEPRECATED void endFill() { finalize(); }
    
#   ifdef EIGEN_SPARSEMATRIX_PLUGIN
#     include EIGEN_SPARSEMATRIX_PLUGIN
#   endif

private:
  struct default_prunning_func {
    default_prunning_func(Scalar ref, RealScalar eps) : reference(ref), epsilon(eps) {}
    inline bool operator() (const Index&, const Index&, const Scalar& value) const
    {
      return !internal::isMuchSmallerThan(value, reference, epsilon);
    }
    Scalar reference;
    RealScalar epsilon;
  };
};

template<typename Scalar, int _Options, typename _Index>
class SparseMatrix<Scalar,_Options,_Index>::InnerIterator
{
  public:
    InnerIterator(const SparseMatrix& mat, Index outer)
      : m_values(mat._valuePtr()), m_indices(mat._innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer]), m_end(mat.m_outerIndex[outer+1])
    {}

    inline InnerIterator& operator++() { m_id++; return *this; }

    inline const Scalar& value() const { return m_values[m_id]; }
    inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }

    inline Index index() const { return m_indices[m_id]; }
    inline Index outer() const { return m_outer; }
    inline Index row() const { return IsRowMajor ? m_outer : index(); }
    inline Index col() const { return IsRowMajor ? index() : m_outer; }

    inline operator bool() const { return (m_id < m_end); }

  protected:
    const Scalar* m_values;
    const Index* m_indices;
    const Index m_outer;
    Index m_id;
    const Index m_end;
};

#endif // EIGEN_SPARSEMATRIX_H