Scaling.h 6.92 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SCALING_H
#define EIGEN_SCALING_H

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Scaling
  *
  * \brief Represents a generic uniform scaling transformation
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients.
  *
  * This class represent a uniform scaling transformation. It is the return
  * type of Scaling(Scalar), and most of the time this is the only way it
  * is used. In particular, this class is not aimed to be used to store a scaling transformation,
  * but rather to make easier the constructions and updates of Transform objects.
  *
  * To represent an axis aligned scaling, use the DiagonalMatrix class.
  *
  * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform
  */
template<typename _Scalar>
class UniformScaling
{
public:
  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;

protected:

  Scalar m_factor;

public:

  /** Default constructor without initialization. */
  UniformScaling() {}
  /** Constructs and initialize a uniform scaling transformation */
  explicit inline UniformScaling(const Scalar& s) : m_factor(s) {}

  inline const Scalar& factor() const { return m_factor; }
  inline Scalar& factor() { return m_factor; }

  /** Concatenates two uniform scaling */
  inline UniformScaling operator* (const UniformScaling& other) const
  { return UniformScaling(m_factor * other.factor()); }

  /** Concatenates a uniform scaling and a translation */
  template<int Dim>
  inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const;

  /** Concatenates a uniform scaling and an affine transformation */
  template<int Dim, int Mode, int Options>
  inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const;

  /** Concatenates a uniform scaling and a linear transformation matrix */
  // TODO returns an expression
  template<typename Derived>
  inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const
  { return other * m_factor; }

  template<typename Derived,int Dim>
  inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const
  { return r.toRotationMatrix() * m_factor; }

  /** \returns the inverse scaling */
  inline UniformScaling inverse() const
  { return UniformScaling(Scalar(1)/m_factor); }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline UniformScaling<NewScalarType> cast() const
  { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other)
  { m_factor = Scalar(other.factor()); }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  bool isApprox(const UniformScaling& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
  { return internal::isApprox(m_factor, other.factor(), prec); }

};

/** Concatenates a linear transformation matrix and a uniform scaling */
// NOTE this operator is defiend in MatrixBase and not as a friend function
// of UniformScaling to fix an internal crash of Intel's ICC
template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType
MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const
{ return derived() * s.factor(); }

/** Constructs a uniform scaling from scale factor \a s */
static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
/** Constructs a uniform scaling from scale factor \a s */
static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
/** Constructs a uniform scaling from scale factor \a s */
template<typename RealScalar>
static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
{ return UniformScaling<std::complex<RealScalar> >(s); }

/** Constructs a 2D axis aligned scaling */
template<typename Scalar>
static inline DiagonalMatrix<Scalar,2> Scaling(Scalar sx, Scalar sy)
{ return DiagonalMatrix<Scalar,2>(sx, sy); }
/** Constructs a 3D axis aligned scaling */
template<typename Scalar>
static inline DiagonalMatrix<Scalar,3> Scaling(Scalar sx, Scalar sy, Scalar sz)
{ return DiagonalMatrix<Scalar,3>(sx, sy, sz); }

/** Constructs an axis aligned scaling expression from vector expression \a coeffs
  * This is an alias for coeffs.asDiagonal()
  */
template<typename Derived>
static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
{ return coeffs.asDiagonal(); }

/** \addtogroup Geometry_Module */
//@{
/** \deprecated */
typedef DiagonalMatrix<float, 2> AlignedScaling2f;
/** \deprecated */
typedef DiagonalMatrix<double,2> AlignedScaling2d;
/** \deprecated */
typedef DiagonalMatrix<float, 3> AlignedScaling3f;
/** \deprecated */
typedef DiagonalMatrix<double,3> AlignedScaling3d;
//@}

template<typename Scalar>
template<int Dim>
inline Transform<Scalar,Dim,Affine>
UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const
{
  Transform<Scalar,Dim,Affine> res;
  res.matrix().setZero();
  res.linear().diagonal().fill(factor());
  res.translation() = factor() * t.vector();
  res(Dim,Dim) = Scalar(1);
  return res;
}

template<typename Scalar>
template<int Dim,int Mode,int Options>
inline Transform<Scalar,Dim,Mode>
UniformScaling<Scalar>::operator* (const Transform<Scalar,Dim, Mode, Options>& t) const
{
  Transform<Scalar,Dim,Mode> res = t;
  res.prescale(factor());
  return res;
}

#endif // EIGEN_SCALING_H