Math.hpp 24.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
/**
 * \file Math.hpp
 * \brief Header for GeographicLib::Math class
 *
 * Copyright (c) Charles Karney (2008-2019) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/

// Constants.hpp includes Math.hpp.  Place this include outside Math.hpp's
// include guard to enforce this ordering.
#include "Constants.hpp"

#if !defined(GEOGRAPHICLIB_MATH_HPP)
#define GEOGRAPHICLIB_MATH_HPP 1

/**
 * Are C++11 math functions available?
 **********************************************************************/
#if !defined(GEOGRAPHICLIB_CXX11_MATH)
// Recent versions of g++ -std=c++11 (4.7 and later?) set __cplusplus to 201103
// and support the new C++11 mathematical functions, std::atanh, etc.  However
// the Android toolchain, which uses g++ -std=c++11 (4.8 as of 2014-03-11,
// according to Pullan Lu), does not support std::atanh.  Android toolchains
// might define __ANDROID__ or ANDROID; so need to check both.  With OSX the
// version is GNUC version 4.2 and __cplusplus is set to 201103, so remove the
// version check on GNUC.
#  if defined(__GNUC__) && __cplusplus >= 201103 && \
  !(defined(__ANDROID__) || defined(ANDROID) || defined(__CYGWIN__))
#    define GEOGRAPHICLIB_CXX11_MATH 1
// Visual C++ 12 supports these functions
#  elif defined(_MSC_VER) && _MSC_VER >= 1800
#    define GEOGRAPHICLIB_CXX11_MATH 1
#  else
#    define GEOGRAPHICLIB_CXX11_MATH 0
#  endif
#endif

#if !defined(GEOGRAPHICLIB_WORDS_BIGENDIAN)
#  define GEOGRAPHICLIB_WORDS_BIGENDIAN 0
#endif

#if !defined(GEOGRAPHICLIB_HAVE_LONG_DOUBLE)
#  define GEOGRAPHICLIB_HAVE_LONG_DOUBLE 0
#endif

#if !defined(GEOGRAPHICLIB_PRECISION)
/**
 * The precision of floating point numbers used in %GeographicLib.  1 means
 * float (single precision); 2 (the default) means double; 3 means long double;
 * 4 is reserved for quadruple precision.  Nearly all the testing has been
 * carried out with doubles and that's the recommended configuration.  In order
 * for long double to be used, GEOGRAPHICLIB_HAVE_LONG_DOUBLE needs to be
 * defined.  Note that with Microsoft Visual Studio, long double is the same as
 * double.
 **********************************************************************/
#  define GEOGRAPHICLIB_PRECISION 2
#endif

#include <cmath>
#include <algorithm>
#include <limits>

#if GEOGRAPHICLIB_PRECISION == 4
#include <boost/version.hpp>
#include <boost/multiprecision/float128.hpp>
#include <boost/math/special_functions.hpp>
#elif GEOGRAPHICLIB_PRECISION == 5
#include <mpreal.h>
#endif

#if GEOGRAPHICLIB_PRECISION > 3
// volatile keyword makes no sense for multiprec types
#define GEOGRAPHICLIB_VOLATILE
// Signal a convergence failure with multiprec types by throwing an exception
// at loop exit.
#define GEOGRAPHICLIB_PANIC \
  (throw GeographicLib::GeographicErr("Convergence failure"), false)
#else
#define GEOGRAPHICLIB_VOLATILE volatile
// Ignore convergence failures with standard floating points types by allowing
// loop to exit cleanly.
#define GEOGRAPHICLIB_PANIC false
#endif

namespace GeographicLib {

  /**
   * \brief Mathematical functions needed by %GeographicLib
   *
   * Define mathematical functions in order to localize system dependencies and
   * to provide generic versions of the functions.  In addition define a real
   * type to be used by %GeographicLib.
   *
   * Example of use:
   * \include example-Math.cpp
   **********************************************************************/
  class Math {
  private:
    void dummy();               // Static check for GEOGRAPHICLIB_PRECISION
    Math();                     // Disable constructor
  public:

#if GEOGRAPHICLIB_HAVE_LONG_DOUBLE
    /**
     * The extended precision type for real numbers, used for some testing.
     * This is long double on computers with this type; otherwise it is double.
     **********************************************************************/
    typedef long double extended;
#else
    typedef double extended;
#endif

#if GEOGRAPHICLIB_PRECISION == 2
    /**
     * The real type for %GeographicLib. Nearly all the testing has been done
     * with \e real = double.  However, the algorithms should also work with
     * float and long double (where available).  (<b>CAUTION</b>: reasonable
     * accuracy typically cannot be obtained using floats.)
     **********************************************************************/
    typedef double real;
#elif GEOGRAPHICLIB_PRECISION == 1
    typedef float real;
#elif GEOGRAPHICLIB_PRECISION == 3
    typedef extended real;
#elif GEOGRAPHICLIB_PRECISION == 4
    typedef boost::multiprecision::float128 real;
#elif GEOGRAPHICLIB_PRECISION == 5
    typedef mpfr::mpreal real;
#else
    typedef double real;
#endif

    /**
     * @return the number of bits of precision in a real number.
     **********************************************************************/
    static int digits();

    /**
     * Set the binary precision of a real number.
     *
     * @param[in] ndigits the number of bits of precision.
     * @return the resulting number of bits of precision.
     *
     * This only has an effect when GEOGRAPHICLIB_PRECISION = 5.  See also
     * Utility::set_digits for caveats about when this routine should be
     * called.
     **********************************************************************/
    static int set_digits(int ndigits);

    /**
     * @return the number of decimal digits of precision in a real number.
     **********************************************************************/
    static int digits10();

    /**
     * Number of additional decimal digits of precision for real relative to
     * double (0 for float).
     **********************************************************************/
    static int extra_digits();

    /**
     * true if the machine is big-endian.
     **********************************************************************/
    static const bool bigendian = GEOGRAPHICLIB_WORDS_BIGENDIAN;

    /**
     * @tparam T the type of the returned value.
     * @return &pi;.
     **********************************************************************/
    template<typename T> static T pi() {
      using std::atan2;
      static const T pi = atan2(T(0), T(-1));
      return pi;
    }
    /**
     * A synonym for pi<real>().
     **********************************************************************/
    static real pi() { return pi<real>(); }

    /**
     * @tparam T the type of the returned value.
     * @return the number of radians in a degree.
     **********************************************************************/
    template<typename T> static T degree() {
      static const T degree = pi<T>() / 180;
      return degree;
    }
    /**
     * A synonym for degree<real>().
     **********************************************************************/
    static real degree() { return degree<real>(); }

    /**
     * Square a number.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return <i>x</i><sup>2</sup>.
     **********************************************************************/
    template<typename T> static T sq(T x)
    { return x * x; }

    /**
     * The hypotenuse function avoiding underflow and overflow.
     *
     * @tparam T the type of the arguments and the returned value.
     * @param[in] x
     * @param[in] y
     * @return sqrt(<i>x</i><sup>2</sup> + <i>y</i><sup>2</sup>).
     **********************************************************************/
    template<typename T> static T hypot(T x, T y);

    /**
     * exp(\e x) &minus; 1 accurate near \e x = 0.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return exp(\e x) &minus; 1.
     **********************************************************************/
    template<typename T> static T expm1(T x);

    /**
     * log(1 + \e x) accurate near \e x = 0.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return log(1 + \e x).
     **********************************************************************/
    template<typename T> static T log1p(T x);

    /**
     * The inverse hyperbolic sine function.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return asinh(\e x).
     **********************************************************************/
    template<typename T> static T asinh(T x);

    /**
     * The inverse hyperbolic tangent function.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return atanh(\e x).
     **********************************************************************/
    template<typename T> static T atanh(T x);

    /**
     * Copy the sign.
     *
     * @tparam T the type of the argument.
     * @param[in] x gives the magitude of the result.
     * @param[in] y gives the sign of the result.
     * @return value with the magnitude of \e x and with the sign of \e y.
     *
     * This routine correctly handles the case \e y = &minus;0, returning
     * &minus|<i>x</i>|.
     **********************************************************************/
    template<typename T> static T copysign(T x, T y);

    /**
     * The cube root function.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return the real cube root of \e x.
     **********************************************************************/
    template<typename T> static T cbrt(T x);

    /**
     * The remainder function.
     *
     * @tparam T the type of the arguments and the returned value.
     * @param[in] x
     * @param[in] y
     * @return the remainder of \e x/\e y in the range [&minus;\e y/2, \e y/2].
     **********************************************************************/
    template<typename T> static T remainder(T x, T y);

    /**
     * The remquo function.
     *
     * @tparam T the type of the arguments and the returned value.
     * @param[in] x
     * @param[in] y
     * @param[out] n the low 3 bits of the quotient
     * @return the remainder of \e x/\e y in the range [&minus;\e y/2, \e y/2].
     **********************************************************************/
    template<typename T> static T remquo(T x, T y, int* n);

    /**
     * The round function.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return \e x round to the nearest integer (ties round away from 0).
     **********************************************************************/
    template<typename T> static T round(T x);

    /**
     * The lround function.
     *
     * @tparam T the type of the argument.
     * @param[in] x
     * @return \e x round to the nearest integer as a long int (ties round away
     *   from 0).
     *
     * If the result does not fit in a long int, the return value is undefined.
     **********************************************************************/
    template<typename T> static long lround(T x);

    /**
     * Fused multiply and add.
     *
     * @tparam T the type of the arguments and the returned value.
     * @param[in] x
     * @param[in] y
     * @param[in] z
     * @return <i>xy</i> + <i>z</i>, correctly rounded (on those platforms with
     *   support for the <code>fma</code> instruction).
     *
     * On platforms without the <code>fma</code> instruction, no attempt is
     * made to improve on the result of a rounded multiplication followed by a
     * rounded addition.
     **********************************************************************/
    template<typename T> static T fma(T x, T y, T z);

    /**
     * Normalize a two-vector.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in,out] x on output set to <i>x</i>/hypot(<i>x</i>, <i>y</i>).
     * @param[in,out] y on output set to <i>y</i>/hypot(<i>x</i>, <i>y</i>).
     **********************************************************************/
    template<typename T> static void norm(T& x, T& y)
    { T h = hypot(x, y); x /= h; y /= h; }

    /**
     * The error-free sum of two numbers.
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] u
     * @param[in] v
     * @param[out] t the exact error given by (\e u + \e v) - \e s.
     * @return \e s = round(\e u + \e v).
     *
     * See D. E. Knuth, TAOCP, Vol 2, 4.2.2, Theorem B.  (Note that \e t can be
     * the same as one of the first two arguments.)
     **********************************************************************/
    template<typename T> static T sum(T u, T v, T& t);

    /**
     * Evaluate a polynomial.
     *
     * @tparam T the type of the arguments and returned value.
     * @param[in] N the order of the polynomial.
     * @param[in] p the coefficient array (of size \e N + 1).
     * @param[in] x the variable.
     * @return the value of the polynomial.
     *
     * Evaluate <i>y</i> = &sum;<sub><i>n</i>=0..<i>N</i></sub>
     * <i>p</i><sub><i>n</i></sub> <i>x</i><sup><i>N</i>&minus;<i>n</i></sup>.
     * Return 0 if \e N &lt; 0.  Return <i>p</i><sub>0</sub>, if \e N = 0 (even
     * if \e x is infinite or a nan).  The evaluation uses Horner's method.
     **********************************************************************/
    template<typename T> static T polyval(int N, const T p[], T x)
    // This used to employ Math::fma; but that's too slow and it seemed not to
    // improve the accuracy noticeably.  This might change when there's direct
    // hardware support for fma.
    { T y = N < 0 ? 0 : *p++; while (--N >= 0) y = y * x + *p++; return y; }

    /**
     * Normalize an angle.
     *
     * @tparam T the type of the argument and returned value.
     * @param[in] x the angle in degrees.
     * @return the angle reduced to the range (&minus;180&deg;, 180&deg;].
     *
     * The range of \e x is unrestricted.
     **********************************************************************/
    template<typename T> static T AngNormalize(T x) {
      x = remainder(x, T(360)); return x != -180 ? x : 180;
    }

    /**
     * Normalize a latitude.
     *
     * @tparam T the type of the argument and returned value.
     * @param[in] x the angle in degrees.
     * @return x if it is in the range [&minus;90&deg;, 90&deg;], otherwise
     *   return NaN.
     **********************************************************************/
    template<typename T> static T LatFix(T x)
    { using std::abs; return abs(x) > 90 ? NaN<T>() : x; }

    /**
     * The exact difference of two angles reduced to
     * (&minus;180&deg;, 180&deg;].
     *
     * @tparam T the type of the arguments and returned value.
     * @param[in] x the first angle in degrees.
     * @param[in] y the second angle in degrees.
     * @param[out] e the error term in degrees.
     * @return \e d, the truncated value of \e y &minus; \e x.
     *
     * This computes \e z = \e y &minus; \e x exactly, reduced to
     * (&minus;180&deg;, 180&deg;]; and then sets \e z = \e d + \e e where \e d
     * is the nearest representable number to \e z and \e e is the truncation
     * error.  If \e d = &minus;180, then \e e &gt; 0; If \e d = 180, then \e e
     * &le; 0.
     **********************************************************************/
    template<typename T> static T AngDiff(T x, T y, T& e) {
      T t, d = AngNormalize(sum(remainder(-x, T(360)),
                                remainder( y, T(360)), t));
      // Here y - x = d + t (mod 360), exactly, where d is in (-180,180] and
      // abs(t) <= eps (eps = 2^-45 for doubles).  The only case where the
      // addition of t takes the result outside the range (-180,180] is d = 180
      // and t > 0.  The case, d = -180 + eps, t = -eps, can't happen, since
      // sum would have returned the exact result in such a case (i.e., given t
      // = 0).
      return sum(d == 180 && t > 0 ? -180 : d, t, e);
    }

    /**
     * Difference of two angles reduced to [&minus;180&deg;, 180&deg;]
     *
     * @tparam T the type of the arguments and returned value.
     * @param[in] x the first angle in degrees.
     * @param[in] y the second angle in degrees.
     * @return \e y &minus; \e x, reduced to the range [&minus;180&deg;,
     *   180&deg;].
     *
     * The result is equivalent to computing the difference exactly, reducing
     * it to (&minus;180&deg;, 180&deg;] and rounding the result.  Note that
     * this prescription allows &minus;180&deg; to be returned (e.g., if \e x
     * is tiny and negative and \e y = 180&deg;).
     **********************************************************************/
    template<typename T> static T AngDiff(T x, T y)
    { T e; return AngDiff(x, y, e); }

    /**
     * Coarsen a value close to zero.
     *
     * @tparam T the type of the argument and returned value.
     * @param[in] x
     * @return the coarsened value.
     *
     * The makes the smallest gap in \e x = 1/16 &minus; nextafter(1/16, 0) =
     * 1/2<sup>57</sup> for reals = 0.7 pm on the earth if \e x is an angle in
     * degrees.  (This is about 1000 times more resolution than we get with
     * angles around 90&deg;.)  We use this to avoid having to deal with near
     * singular cases when \e x is non-zero but tiny (e.g.,
     * 10<sup>&minus;200</sup>).  This converts &minus;0 to +0; however tiny
     * negative numbers get converted to &minus;0.
     **********************************************************************/
    template<typename T> static T AngRound(T x);

    /**
     * Evaluate the sine and cosine function with the argument in degrees
     *
     * @tparam T the type of the arguments.
     * @param[in] x in degrees.
     * @param[out] sinx sin(<i>x</i>).
     * @param[out] cosx cos(<i>x</i>).
     *
     * The results obey exactly the elementary properties of the trigonometric
     * functions, e.g., sin 9&deg; = cos 81&deg; = &minus; sin 123456789&deg;.
     * If x = &minus;0, then \e sinx = &minus;0; this is the only case where
     * &minus;0 is returned.
     **********************************************************************/
    template<typename T> static void sincosd(T x, T& sinx, T& cosx);

    /**
     * Evaluate the sine function with the argument in degrees
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x in degrees.
     * @return sin(<i>x</i>).
     **********************************************************************/
    template<typename T> static T sind(T x);

    /**
     * Evaluate the cosine function with the argument in degrees
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x in degrees.
     * @return cos(<i>x</i>).
     **********************************************************************/
    template<typename T> static T cosd(T x);

    /**
     * Evaluate the tangent function with the argument in degrees
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x in degrees.
     * @return tan(<i>x</i>).
     *
     * If \e x = &plusmn;90&deg;, then a suitably large (but finite) value is
     * returned.
     **********************************************************************/
    template<typename T> static T tand(T x);

    /**
     * Evaluate the atan2 function with the result in degrees
     *
     * @tparam T the type of the arguments and the returned value.
     * @param[in] y
     * @param[in] x
     * @return atan2(<i>y</i>, <i>x</i>) in degrees.
     *
     * The result is in the range (&minus;180&deg; 180&deg;].  N.B.,
     * atan2d(&plusmn;0, &minus;1) = +180&deg;; atan2d(&minus;&epsilon;,
     * &minus;1) = &minus;180&deg;, for &epsilon; positive and tiny;
     * atan2d(&plusmn;0, +1) = &plusmn;0&deg;.
     **********************************************************************/
    template<typename T> static T atan2d(T y, T x);

    /**
     * Evaluate the atan function with the result in degrees
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return atan(<i>x</i>) in degrees.
     **********************************************************************/
   template<typename T> static T atand(T x);

    /**
     * Evaluate <i>e</i> atanh(<i>e x</i>)
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @param[in] es the signed eccentricity =  sign(<i>e</i><sup>2</sup>)
     *    sqrt(|<i>e</i><sup>2</sup>|)
     * @return <i>e</i> atanh(<i>e x</i>)
     *
     * If <i>e</i><sup>2</sup> is negative (<i>e</i> is imaginary), the
     * expression is evaluated in terms of atan.
     **********************************************************************/
    template<typename T> static T eatanhe(T x, T es);

    /**
     * tan&chi; in terms of tan&phi;
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] tau &tau; = tan&phi;
     * @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
     *   sqrt(|<i>e</i><sup>2</sup>|)
     * @return &tau;&prime; = tan&chi;
     *
     * See Eqs. (7--9) of
     * C. F. F. Karney,
     * <a href="https://doi.org/10.1007/s00190-011-0445-3">
     * Transverse Mercator with an accuracy of a few nanometers,</a>
     * J. Geodesy 85(8), 475--485 (Aug. 2011)
     * (preprint
     * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>).
     **********************************************************************/
    template<typename T> static T taupf(T tau, T es);

    /**
     * tan&phi; in terms of tan&chi;
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] taup &tau;&prime; = tan&chi;
     * @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
     *   sqrt(|<i>e</i><sup>2</sup>|)
     * @return &tau; = tan&phi;
     *
     * See Eqs. (19--21) of
     * C. F. F. Karney,
     * <a href="https://doi.org/10.1007/s00190-011-0445-3">
     * Transverse Mercator with an accuracy of a few nanometers,</a>
     * J. Geodesy 85(8), 475--485 (Aug. 2011)
     * (preprint
     * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>).
     **********************************************************************/
    template<typename T> static T tauf(T taup, T es);

    /**
     * Test for finiteness.
     *
     * @tparam T the type of the argument.
     * @param[in] x
     * @return true if number is finite, false if NaN or infinite.
     **********************************************************************/
    template<typename T> static bool isfinite(T x);

    /**
     * The NaN (not a number)
     *
     * @tparam T the type of the returned value.
     * @return NaN if available, otherwise return the max real of type T.
     **********************************************************************/
    template<typename T> static T NaN();

    /**
     * A synonym for NaN<real>().
     **********************************************************************/
    static real NaN() { return NaN<real>(); }

    /**
     * Test for NaN.
     *
     * @tparam T the type of the argument.
     * @param[in] x
     * @return true if argument is a NaN.
     **********************************************************************/
    template<typename T> static bool isnan(T x);

    /**
     * Infinity
     *
     * @tparam T the type of the returned value.
     * @return infinity if available, otherwise return the max real.
     **********************************************************************/
    template<typename T> static T infinity();

    /**
     * A synonym for infinity<real>().
     **********************************************************************/
    static real infinity() { return infinity<real>(); }

    /**
     * Swap the bytes of a quantity
     *
     * @tparam T the type of the argument and the returned value.
     * @param[in] x
     * @return x with its bytes swapped.
     **********************************************************************/
    template<typename T> static T swab(T x) {
      union {
        T r;
        unsigned char c[sizeof(T)];
      } b;
      b.r = x;
      for (int i = sizeof(T)/2; i--; )
        std::swap(b.c[i], b.c[sizeof(T) - 1 - i]);
      return b.r;
    }

  };

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_MATH_HPP