PardisoSupport.h 20 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 Copyright (c) 2011, Intel Corporation. All rights reserved.

 Redistribution and use in source and binary forms, with or without modification,
 are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice, this
   list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.
 * Neither the name of Intel Corporation nor the names of its contributors may
   be used to endorse or promote products derived from this software without
   specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 ********************************************************************************
 *   Content : Eigen bindings to Intel(R) MKL PARDISO
 ********************************************************************************
*/

#ifndef EIGEN_PARDISOSUPPORT_H
#define EIGEN_PARDISOSUPPORT_H

namespace Eigen { 

template<typename _MatrixType> class PardisoLU;
template<typename _MatrixType, int Options=Upper> class PardisoLLT;
template<typename _MatrixType, int Options=Upper> class PardisoLDLT;

namespace internal
{
  template<typename Index>
  struct pardiso_run_selector
  {
    static Index run( _MKL_DSS_HANDLE_t pt, Index maxfct, Index mnum, Index type, Index phase, Index n, void *a,
                      Index *ia, Index *ja, Index *perm, Index nrhs, Index *iparm, Index msglvl, void *b, void *x)
    {
      Index error = 0;
      ::pardiso(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error);
      return error;
    }
  };
  template<>
  struct pardiso_run_selector<long long int>
  {
    typedef long long int Index;
    static Index run( _MKL_DSS_HANDLE_t pt, Index maxfct, Index mnum, Index type, Index phase, Index n, void *a,
                      Index *ia, Index *ja, Index *perm, Index nrhs, Index *iparm, Index msglvl, void *b, void *x)
    {
      Index error = 0;
      ::pardiso_64(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error);
      return error;
    }
  };

  template<class Pardiso> struct pardiso_traits;

  template<typename _MatrixType>
  struct pardiso_traits< PardisoLU<_MatrixType> >
  {
    typedef _MatrixType MatrixType;
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
    typedef typename _MatrixType::Index Index;
  };

  template<typename _MatrixType, int Options>
  struct pardiso_traits< PardisoLLT<_MatrixType, Options> >
  {
    typedef _MatrixType MatrixType;
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
    typedef typename _MatrixType::Index Index;
  };

  template<typename _MatrixType, int Options>
  struct pardiso_traits< PardisoLDLT<_MatrixType, Options> >
  {
    typedef _MatrixType MatrixType;
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
    typedef typename _MatrixType::Index Index;    
  };

}

template<class Derived>
class PardisoImpl
{
    typedef internal::pardiso_traits<Derived> Traits;
  public:
    typedef typename Traits::MatrixType MatrixType;
    typedef typename Traits::Scalar Scalar;
    typedef typename Traits::RealScalar RealScalar;
    typedef typename Traits::Index Index;
    typedef SparseMatrix<Scalar,RowMajor,Index> SparseMatrixType;
    typedef Matrix<Scalar,Dynamic,1> VectorType;
    typedef Matrix<Index, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
    typedef Matrix<Index, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
    typedef Array<Index,64,1,DontAlign> ParameterType;
    enum {
      ScalarIsComplex = NumTraits<Scalar>::IsComplex
    };

    PardisoImpl()
    {
      eigen_assert((sizeof(Index) >= sizeof(_INTEGER_t) && sizeof(Index) <= 8) && "Non-supported index type");
      m_iparm.setZero();
      m_msglvl = 0; // No output
      m_initialized = false;
    }

    ~PardisoImpl()
    {
      pardisoRelease();
    }

    inline Index cols() const { return m_size; }
    inline Index rows() const { return m_size; }
  
    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the matrix appears to be negative.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_initialized && "Decomposition is not initialized.");
      return m_info;
    }

    /** \warning for advanced usage only.
      * \returns a reference to the parameter array controlling PARDISO.
      * See the PARDISO manual to know how to use it. */
    ParameterType& pardisoParameterArray()
    {
      return m_iparm;
    }
    
    /** Performs a symbolic decomposition on the sparcity of \a matrix.
      *
      * This function is particularly useful when solving for several problems having the same structure.
      * 
      * \sa factorize()
      */
    Derived& analyzePattern(const MatrixType& matrix);
    
    /** Performs a numeric decomposition of \a matrix
      *
      * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
      *
      * \sa analyzePattern()
      */
    Derived& factorize(const MatrixType& matrix);

    Derived& compute(const MatrixType& matrix);
    
    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::solve_retval<PardisoImpl, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_initialized && "Pardiso solver is not initialized.");
      eigen_assert(rows()==b.rows()
                && "PardisoImpl::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<PardisoImpl, Rhs>(*this, b.derived());
    }

    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::sparse_solve_retval<PardisoImpl, Rhs>
    solve(const SparseMatrixBase<Rhs>& b) const
    {
      eigen_assert(m_initialized && "Pardiso solver is not initialized.");
      eigen_assert(rows()==b.rows()
                && "PardisoImpl::solve(): invalid number of rows of the right hand side matrix b");
      return internal::sparse_solve_retval<PardisoImpl, Rhs>(*this, b.derived());
    }

    Derived& derived()
    {
      return *static_cast<Derived*>(this);
    }
    const Derived& derived() const
    {
      return *static_cast<const Derived*>(this);
    }

    template<typename BDerived, typename XDerived>
    bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const;

  protected:
    void pardisoRelease()
    {
      if(m_initialized) // Factorization ran at least once
      {
        internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, -1, m_size, 0, 0, 0, m_perm.data(), 0,
                                                   m_iparm.data(), m_msglvl, 0, 0);
      }
    }

    void pardisoInit(int type)
    {
      m_type = type;
222
      bool symmetric = std::abs(m_type) < 10;
Don Gagne's avatar
Don Gagne committed
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
      m_iparm[0] = 1;   // No solver default
      m_iparm[1] = 3;   // use Metis for the ordering
      m_iparm[2] = 1;   // Numbers of processors, value of OMP_NUM_THREADS
      m_iparm[3] = 0;   // No iterative-direct algorithm
      m_iparm[4] = 0;   // No user fill-in reducing permutation
      m_iparm[5] = 0;   // Write solution into x
      m_iparm[6] = 0;   // Not in use
      m_iparm[7] = 2;   // Max numbers of iterative refinement steps
      m_iparm[8] = 0;   // Not in use
      m_iparm[9] = 13;  // Perturb the pivot elements with 1E-13
      m_iparm[10] = symmetric ? 0 : 1; // Use nonsymmetric permutation and scaling MPS
      m_iparm[11] = 0;  // Not in use
      m_iparm[12] = symmetric ? 0 : 1;  // Maximum weighted matching algorithm is switched-off (default for symmetric).
                                        // Try m_iparm[12] = 1 in case of inappropriate accuracy
      m_iparm[13] = 0;  // Output: Number of perturbed pivots
      m_iparm[14] = 0;  // Not in use
      m_iparm[15] = 0;  // Not in use
      m_iparm[16] = 0;  // Not in use
      m_iparm[17] = -1; // Output: Number of nonzeros in the factor LU
      m_iparm[18] = -1; // Output: Mflops for LU factorization
      m_iparm[19] = 0;  // Output: Numbers of CG Iterations
      
      m_iparm[20] = 0;  // 1x1 pivoting
      m_iparm[26] = 0;  // No matrix checker
      m_iparm[27] = (sizeof(RealScalar) == 4) ? 1 : 0;
      m_iparm[34] = 1;  // C indexing
      m_iparm[59] = 1;  // Automatic switch between In-Core and Out-of-Core modes
    }

  protected:
    // cached data to reduce reallocation, etc.
    
    void manageErrorCode(Index error)
    {
      switch(error)
      {
        case 0:
          m_info = Success;
          break;
        case -4:
        case -7:
          m_info = NumericalIssue;
          break;
        default:
          m_info = InvalidInput;
      }
    }

    mutable SparseMatrixType m_matrix;
    ComputationInfo m_info;
    bool m_initialized, m_analysisIsOk, m_factorizationIsOk;
    Index m_type, m_msglvl;
    mutable void *m_pt[64];
    mutable ParameterType m_iparm;
    mutable IntColVectorType m_perm;
    Index m_size;
    
  private:
    PardisoImpl(PardisoImpl &) {}
};

template<class Derived>
Derived& PardisoImpl<Derived>::compute(const MatrixType& a)
{
  m_size = a.rows();
  eigen_assert(a.rows() == a.cols());

  pardisoRelease();
  memset(m_pt, 0, sizeof(m_pt));
  m_perm.setZero(m_size);
  derived().getMatrix(a);
  
  Index error;
  error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 12, m_size,
                                                     m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
                                                     m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);

  manageErrorCode(error);
  m_analysisIsOk = true;
  m_factorizationIsOk = true;
  m_initialized = true;
  return derived();
}

template<class Derived>
Derived& PardisoImpl<Derived>::analyzePattern(const MatrixType& a)
{
  m_size = a.rows();
  eigen_assert(m_size == a.cols());

  pardisoRelease();
  memset(m_pt, 0, sizeof(m_pt));
  m_perm.setZero(m_size);
  derived().getMatrix(a);
  
  Index error;
  error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 11, m_size,
                                                     m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
                                                     m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
  
  manageErrorCode(error);
  m_analysisIsOk = true;
  m_factorizationIsOk = false;
  m_initialized = true;
  return derived();
}

template<class Derived>
Derived& PardisoImpl<Derived>::factorize(const MatrixType& a)
{
  eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
  eigen_assert(m_size == a.rows() && m_size == a.cols());
  
  derived().getMatrix(a);

  Index error;  
  error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 22, m_size,
                                                     m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
                                                     m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
  
  manageErrorCode(error);
  m_factorizationIsOk = true;
  return derived();
}

template<class Base>
template<typename BDerived,typename XDerived>
bool PardisoImpl<Base>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const
{
  if(m_iparm[0] == 0) // Factorization was not computed
    return false;

  //Index n = m_matrix.rows();
  Index nrhs = Index(b.cols());
  eigen_assert(m_size==b.rows());
  eigen_assert(((MatrixBase<BDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major right hand sides are not supported");
  eigen_assert(((MatrixBase<XDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major matrices of unknowns are not supported");
  eigen_assert(((nrhs == 1) || b.outerStride() == b.rows()));


//  switch (transposed) {
//    case SvNoTrans    : m_iparm[11] = 0 ; break;
//    case SvTranspose  : m_iparm[11] = 2 ; break;
//    case SvAdjoint    : m_iparm[11] = 1 ; break;
//    default:
//      //std::cerr << "Eigen: transposition  option \"" << transposed << "\" not supported by the PARDISO backend\n";
//      m_iparm[11] = 0;
//  }

  Scalar* rhs_ptr = const_cast<Scalar*>(b.derived().data());
  Matrix<Scalar,Dynamic,Dynamic,ColMajor> tmp;
  
  // Pardiso cannot solve in-place
  if(rhs_ptr == x.derived().data())
  {
    tmp = b;
    rhs_ptr = tmp.data();
  }
  
  Index error;
  error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 33, m_size,
                                                     m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
                                                     m_perm.data(), nrhs, m_iparm.data(), m_msglvl,
                                                     rhs_ptr, x.derived().data());

  return error==0;
}


/** \ingroup PardisoSupport_Module
  * \class PardisoLU
  * \brief A sparse direct LU factorization and solver based on the PARDISO library
  *
  * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization
  * using the Intel MKL PARDISO library. The sparse matrix A must be squared and invertible.
  * The vectors or matrices X and B can be either dense or sparse.
  *
  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  *
  * \sa \ref TutorialSparseDirectSolvers
  */
template<typename MatrixType>
class PardisoLU : public PardisoImpl< PardisoLU<MatrixType> >
{
  protected:
    typedef PardisoImpl< PardisoLU<MatrixType> > Base;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::RealScalar RealScalar;
    using Base::pardisoInit;
    using Base::m_matrix;
    friend class PardisoImpl< PardisoLU<MatrixType> >;

  public:

    using Base::compute;
    using Base::solve;

    PardisoLU()
      : Base()
    {
      pardisoInit(Base::ScalarIsComplex ? 13 : 11);
    }

    PardisoLU(const MatrixType& matrix)
      : Base()
    {
      pardisoInit(Base::ScalarIsComplex ? 13 : 11);
      compute(matrix);
    }
  protected:
    void getMatrix(const MatrixType& matrix)
    {
      m_matrix = matrix;
    }
    
  private:
    PardisoLU(PardisoLU& ) {}
};

/** \ingroup PardisoSupport_Module
  * \class PardisoLLT
  * \brief A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library
  *
  * This class allows to solve for A.X = B sparse linear problems via a LL^T Cholesky factorization
  * using the Intel MKL PARDISO library. The sparse matrix A must be selfajoint and positive definite.
  * The vectors or matrices X and B can be either dense or sparse.
  *
  * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  * \tparam UpLo can be any bitwise combination of Upper, Lower. The default is Upper, meaning only the upper triangular part has to be used.
  *         Upper|Lower can be used to tell both triangular parts can be used as input.
  *
  * \sa \ref TutorialSparseDirectSolvers
  */
template<typename MatrixType, int _UpLo>
class PardisoLLT : public PardisoImpl< PardisoLLT<MatrixType,_UpLo> >
{
  protected:
    typedef PardisoImpl< PardisoLLT<MatrixType,_UpLo> > Base;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::Index Index;
    typedef typename Base::RealScalar RealScalar;
    using Base::pardisoInit;
    using Base::m_matrix;
    friend class PardisoImpl< PardisoLLT<MatrixType,_UpLo> >;

  public:

    enum { UpLo = _UpLo };
    using Base::compute;
    using Base::solve;

    PardisoLLT()
      : Base()
    {
      pardisoInit(Base::ScalarIsComplex ? 4 : 2);
    }

    PardisoLLT(const MatrixType& matrix)
      : Base()
    {
      pardisoInit(Base::ScalarIsComplex ? 4 : 2);
      compute(matrix);
    }
    
  protected:
    
    void getMatrix(const MatrixType& matrix)
    {
      // PARDISO supports only upper, row-major matrices
      PermutationMatrix<Dynamic,Dynamic,Index> p_null;
      m_matrix.resize(matrix.rows(), matrix.cols());
      m_matrix.template selfadjointView<Upper>() = matrix.template selfadjointView<UpLo>().twistedBy(p_null);
    }
    
  private:
    PardisoLLT(PardisoLLT& ) {}
};

/** \ingroup PardisoSupport_Module
  * \class PardisoLDLT
  * \brief A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library
  *
  * This class allows to solve for A.X = B sparse linear problems via a LDL^T Cholesky factorization
  * using the Intel MKL PARDISO library. The sparse matrix A is assumed to be selfajoint and positive definite.
  * For complex matrices, A can also be symmetric only, see the \a Options template parameter.
  * The vectors or matrices X and B can be either dense or sparse.
  *
  * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  * \tparam Options can be any bitwise combination of Upper, Lower, and Symmetric. The default is Upper, meaning only the upper triangular part has to be used.
  *         Symmetric can be used for symmetric, non-selfadjoint complex matrices, the default being to assume a selfadjoint matrix.
  *         Upper|Lower can be used to tell both triangular parts can be used as input.
  *
  * \sa \ref TutorialSparseDirectSolvers
  */
template<typename MatrixType, int Options>
class PardisoLDLT : public PardisoImpl< PardisoLDLT<MatrixType,Options> >
{
  protected:
    typedef PardisoImpl< PardisoLDLT<MatrixType,Options> > Base;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::Index Index;
    typedef typename Base::RealScalar RealScalar;
    using Base::pardisoInit;
    using Base::m_matrix;
    friend class PardisoImpl< PardisoLDLT<MatrixType,Options> >;

  public:

    using Base::compute;
    using Base::solve;
    enum { UpLo = Options&(Upper|Lower) };

    PardisoLDLT()
      : Base()
    {
      pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2);
    }

    PardisoLDLT(const MatrixType& matrix)
      : Base()
    {
      pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2);
      compute(matrix);
    }
    
    void getMatrix(const MatrixType& matrix)
    {
      // PARDISO supports only upper, row-major matrices
      PermutationMatrix<Dynamic,Dynamic,Index> p_null;
      m_matrix.resize(matrix.rows(), matrix.cols());
      m_matrix.template selfadjointView<Upper>() = matrix.template selfadjointView<UpLo>().twistedBy(p_null);
    }
    
  private:
    PardisoLDLT(PardisoLDLT& ) {}
};

namespace internal {
  
template<typename _Derived, typename Rhs>
struct solve_retval<PardisoImpl<_Derived>, Rhs>
  : solve_retval_base<PardisoImpl<_Derived>, Rhs>
{
  typedef PardisoImpl<_Derived> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};

template<typename Derived, typename Rhs>
struct sparse_solve_retval<PardisoImpl<Derived>, Rhs>
  : sparse_solve_retval_base<PardisoImpl<Derived>, Rhs>
{
  typedef PardisoImpl<Derived> Dec;
  EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    this->defaultEvalTo(dst);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_PARDISOSUPPORT_H