Eigen_Colamd.h 60.1 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
// // This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

// This file is modified from the colamd/symamd library. The copyright is below

//   The authors of the code itself are Stefan I. Larimore and Timothy A.
//   Davis (davis@cise.ufl.edu), University of Florida.  The algorithm was
//   developed in collaboration with John Gilbert, Xerox PARC, and Esmond
//   Ng, Oak Ridge National Laboratory.
// 
//     Date:
// 
//   September 8, 2003.  Version 2.3.
// 
//     Acknowledgements:
// 
//   This work was supported by the National Science Foundation, under
//   grants DMS-9504974 and DMS-9803599.
// 
//     Notice:
// 
//   Copyright (c) 1998-2003 by the University of Florida.
//   All Rights Reserved.
// 
//   THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
//   EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
// 
//   Permission is hereby granted to use, copy, modify, and/or distribute
//   this program, provided that the Copyright, this License, and the
//   Availability of the original version is retained on all copies and made
//   accessible to the end-user of any code or package that includes COLAMD
//   or any modified version of COLAMD. 
// 
//     Availability:
// 
//   The colamd/symamd library is available at
// 
//       http://www.cise.ufl.edu/research/sparse/colamd/

//   This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.h
//   file.  It is required by the colamd.c, colamdmex.c, and symamdmex.c
//   files, and by any C code that calls the routines whose prototypes are
//   listed below, or that uses the colamd/symamd definitions listed below.
  
#ifndef EIGEN_COLAMD_H
#define EIGEN_COLAMD_H

namespace internal {
/* Ensure that debugging is turned off: */
#ifndef COLAMD_NDEBUG
#define COLAMD_NDEBUG
#endif /* NDEBUG */
/* ========================================================================== */
/* === Knob and statistics definitions ====================================== */
/* ========================================================================== */

/* size of the knobs [ ] array.  Only knobs [0..1] are currently used. */
#define COLAMD_KNOBS 20

/* number of output statistics.  Only stats [0..6] are currently used. */
#define COLAMD_STATS 20 

/* knobs [0] and stats [0]: dense row knob and output statistic. */
#define COLAMD_DENSE_ROW 0

/* knobs [1] and stats [1]: dense column knob and output statistic. */
#define COLAMD_DENSE_COL 1

/* stats [2]: memory defragmentation count output statistic */
#define COLAMD_DEFRAG_COUNT 2

/* stats [3]: colamd status:  zero OK, > 0 warning or notice, < 0 error */
#define COLAMD_STATUS 3

/* stats [4..6]: error info, or info on jumbled columns */ 
#define COLAMD_INFO1 4
#define COLAMD_INFO2 5
#define COLAMD_INFO3 6

/* error codes returned in stats [3]: */
#define COLAMD_OK       (0)
#define COLAMD_OK_BUT_JUMBLED     (1)
#define COLAMD_ERROR_A_not_present    (-1)
#define COLAMD_ERROR_p_not_present    (-2)
#define COLAMD_ERROR_nrow_negative    (-3)
#define COLAMD_ERROR_ncol_negative    (-4)
#define COLAMD_ERROR_nnz_negative   (-5)
#define COLAMD_ERROR_p0_nonzero     (-6)
#define COLAMD_ERROR_A_too_small    (-7)
#define COLAMD_ERROR_col_length_negative  (-8)
#define COLAMD_ERROR_row_index_out_of_bounds  (-9)
#define COLAMD_ERROR_out_of_memory    (-10)
#define COLAMD_ERROR_internal_error   (-999)

/* ========================================================================== */
/* === Definitions ========================================================== */
/* ========================================================================== */

#define COLAMD_MAX(a,b) (((a) > (b)) ? (a) : (b))
#define COLAMD_MIN(a,b) (((a) < (b)) ? (a) : (b))

#define ONES_COMPLEMENT(r) (-(r)-1)

/* -------------------------------------------------------------------------- */

#define COLAMD_EMPTY (-1)

/* Row and column status */
#define ALIVE (0)
#define DEAD  (-1)

/* Column status */
#define DEAD_PRINCIPAL    (-1)
#define DEAD_NON_PRINCIPAL  (-2)

/* Macros for row and column status update and checking. */
#define ROW_IS_DEAD(r)      ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
#define ROW_IS_MARKED_DEAD(row_mark)  (row_mark < ALIVE)
#define ROW_IS_ALIVE(r)     (Row [r].shared2.mark >= ALIVE)
#define COL_IS_DEAD(c)      (Col [c].start < ALIVE)
#define COL_IS_ALIVE(c)     (Col [c].start >= ALIVE)
#define COL_IS_DEAD_PRINCIPAL(c)  (Col [c].start == DEAD_PRINCIPAL)
#define KILL_ROW(r)     { Row [r].shared2.mark = DEAD ; }
#define KILL_PRINCIPAL_COL(c)   { Col [c].start = DEAD_PRINCIPAL ; }
#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }

/* ========================================================================== */
/* === Colamd reporting mechanism =========================================== */
/* ========================================================================== */

// == Row and Column structures ==
template <typename Index>
struct colamd_col
{
  Index start ;   /* index for A of first row in this column, or DEAD */
  /* if column is dead */
  Index length ;  /* number of rows in this column */
  union
  {
    Index thickness ; /* number of original columns represented by this */
    /* col, if the column is alive */
    Index parent ;  /* parent in parent tree super-column structure, if */
    /* the column is dead */
  } shared1 ;
  union
  {
    Index score ; /* the score used to maintain heap, if col is alive */
    Index order ; /* pivot ordering of this column, if col is dead */
  } shared2 ;
  union
  {
    Index headhash ;  /* head of a hash bucket, if col is at the head of */
    /* a degree list */
    Index hash ;  /* hash value, if col is not in a degree list */
    Index prev ;  /* previous column in degree list, if col is in a */
    /* degree list (but not at the head of a degree list) */
  } shared3 ;
  union
  {
    Index degree_next ; /* next column, if col is in a degree list */
    Index hash_next ;   /* next column, if col is in a hash list */
  } shared4 ;
  
};
 
template <typename Index>
struct Colamd_Row
{
  Index start ;   /* index for A of first col in this row */
  Index length ;  /* number of principal columns in this row */
  union
  {
    Index degree ;  /* number of principal & non-principal columns in row */
    Index p ;   /* used as a row pointer in init_rows_cols () */
  } shared1 ;
  union
  {
    Index mark ;  /* for computing set differences and marking dead rows*/
    Index first_column ;/* first column in row (used in garbage collection) */
  } shared2 ;
  
};
 
/* ========================================================================== */
/* === Colamd recommended memory size ======================================= */
/* ========================================================================== */
 
/*
  The recommended length Alen of the array A passed to colamd is given by
  the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro.  It returns -1 if any
  argument is negative.  2*nnz space is required for the row and column
  indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is
  required for the Col and Row arrays, respectively, which are internal to
  colamd.  An additional n_col space is the minimal amount of "elbow room",
  and nnz/5 more space is recommended for run time efficiency.
  
  This macro is not needed when using symamd.
  
  Explicit typecast to Index added Sept. 23, 2002, COLAMD version 2.2, to avoid
  gcc -pedantic warning messages.
*/
template <typename Index>
inline Index colamd_c(Index n_col) 
{ return Index( ((n_col) + 1) * sizeof (colamd_col<Index>) / sizeof (Index) ) ; }

template <typename Index>
inline Index  colamd_r(Index n_row)
{ return Index(((n_row) + 1) * sizeof (Colamd_Row<Index>) / sizeof (Index)); }

// Prototypes of non-user callable routines
template <typename Index>
static Index init_rows_cols (Index n_row, Index n_col, Colamd_Row<Index> Row [], colamd_col<Index> col [], Index A [], Index p [], Index stats[COLAMD_STATS] ); 

template <typename Index>
static void init_scoring (Index n_row, Index n_col, Colamd_Row<Index> Row [], colamd_col<Index> Col [], Index A [], Index head [], double knobs[COLAMD_KNOBS], Index *p_n_row2, Index *p_n_col2, Index *p_max_deg);

template <typename Index>
static Index find_ordering (Index n_row, Index n_col, Index Alen, Colamd_Row<Index> Row [], colamd_col<Index> Col [], Index A [], Index head [], Index n_col2, Index max_deg, Index pfree);

template <typename Index>
static void order_children (Index n_col, colamd_col<Index> Col [], Index p []);

template <typename Index>
static void detect_super_cols (colamd_col<Index> Col [], Index A [], Index head [], Index row_start, Index row_length ) ;

template <typename Index>
static Index garbage_collection (Index n_row, Index n_col, Colamd_Row<Index> Row [], colamd_col<Index> Col [], Index A [], Index *pfree) ;

template <typename Index>
static inline  Index clear_mark (Index n_row, Colamd_Row<Index> Row [] ) ;

/* === No debugging ========================================================= */

#define COLAMD_DEBUG0(params) ;
#define COLAMD_DEBUG1(params) ;
#define COLAMD_DEBUG2(params) ;
#define COLAMD_DEBUG3(params) ;
#define COLAMD_DEBUG4(params) ;

#define COLAMD_ASSERT(expression) ((void) 0)


/**
 * \brief Returns the recommended value of Alen 
 * 
 * Returns recommended value of Alen for use by colamd.  
 * Returns -1 if any input argument is negative.  
 * The use of this routine or macro is optional.  
 * Note that the macro uses its arguments   more than once, 
 * so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED.  
 * 
 * \param nnz nonzeros in A
 * \param n_row number of rows in A
 * \param n_col number of columns in A
 * \return recommended value of Alen for use by colamd
 */
template <typename Index>
inline Index colamd_recommended ( Index nnz, Index n_row, Index n_col)
{
  if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0)
    return (-1);
  else
    return (2 * (nnz) + colamd_c (n_col) + colamd_r (n_row) + (n_col) + ((nnz) / 5)); 
}

/**
 * \brief set default parameters  The use of this routine is optional.
 * 
 * Colamd: rows with more than (knobs [COLAMD_DENSE_ROW] * n_col)
 * entries are removed prior to ordering.  Columns with more than
 * (knobs [COLAMD_DENSE_COL] * n_row) entries are removed prior to
 * ordering, and placed last in the output column ordering. 
 *
 * COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
 * respectively, in colamd.h.  Default values of these two knobs
 * are both 0.5.  Currently, only knobs [0] and knobs [1] are
 * used, but future versions may use more knobs.  If so, they will
 * be properly set to their defaults by the future version of
 * colamd_set_defaults, so that the code that calls colamd will
 * not need to change, assuming that you either use
 * colamd_set_defaults, or pass a (double *) NULL pointer as the
 * knobs array to colamd or symamd.
 * 
 * \param knobs parameter settings for colamd
 */

static inline void colamd_set_defaults(double knobs[COLAMD_KNOBS])
{
  /* === Local variables ================================================== */
  
  int i ;

  if (!knobs)
  {
    return ;      /* no knobs to initialize */
  }
  for (i = 0 ; i < COLAMD_KNOBS ; i++)
  {
    knobs [i] = 0 ;
  }
  knobs [COLAMD_DENSE_ROW] = 0.5 ;  /* ignore rows over 50% dense */
  knobs [COLAMD_DENSE_COL] = 0.5 ;  /* ignore columns over 50% dense */
}

/** 
 * \brief  Computes a column ordering using the column approximate minimum degree ordering
 * 
 * Computes a column ordering (Q) of A such that P(AQ)=LU or
 * (AQ)'AQ=LL' have less fill-in and require fewer floating point
 * operations than factorizing the unpermuted matrix A or A'A,
 * respectively.
 * 
 * 
 * \param n_row number of rows in A
 * \param n_col number of columns in A
 * \param Alen, size of the array A
 * \param A row indices of the matrix, of size ALen
 * \param p column pointers of A, of size n_col+1
 * \param knobs parameter settings for colamd
 * \param stats colamd output statistics and error codes
 */
template <typename Index>
static bool colamd(Index n_row, Index n_col, Index Alen, Index *A, Index *p, double knobs[COLAMD_KNOBS], Index stats[COLAMD_STATS])
{
  /* === Local variables ================================================== */
  
  Index i ;     /* loop index */
  Index nnz ;     /* nonzeros in A */
  Index Row_size ;    /* size of Row [], in integers */
  Index Col_size ;    /* size of Col [], in integers */
  Index need ;      /* minimum required length of A */
  Colamd_Row<Index> *Row ;   /* pointer into A of Row [0..n_row] array */
  colamd_col<Index> *Col ;   /* pointer into A of Col [0..n_col] array */
  Index n_col2 ;    /* number of non-dense, non-empty columns */
  Index n_row2 ;    /* number of non-dense, non-empty rows */
  Index ngarbage ;    /* number of garbage collections performed */
  Index max_deg ;   /* maximum row degree */
  double default_knobs [COLAMD_KNOBS] ; /* default knobs array */
  
  
  /* === Check the input arguments ======================================== */
  
  if (!stats)
  {
    COLAMD_DEBUG0 (("colamd: stats not present\n")) ;
    return (false) ;
  }
  for (i = 0 ; i < COLAMD_STATS ; i++)
  {
    stats [i] = 0 ;
  }
  stats [COLAMD_STATUS] = COLAMD_OK ;
  stats [COLAMD_INFO1] = -1 ;
  stats [COLAMD_INFO2] = -1 ;
  
  if (!A)   /* A is not present */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
    COLAMD_DEBUG0 (("colamd: A not present\n")) ;
    return (false) ;
  }
  
  if (!p)   /* p is not present */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
    COLAMD_DEBUG0 (("colamd: p not present\n")) ;
    return (false) ;
  }
  
  if (n_row < 0)  /* n_row must be >= 0 */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
    stats [COLAMD_INFO1] = n_row ;
    COLAMD_DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
    return (false) ;
  }
  
  if (n_col < 0)  /* n_col must be >= 0 */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
    stats [COLAMD_INFO1] = n_col ;
    COLAMD_DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
    return (false) ;
  }
  
  nnz = p [n_col] ;
  if (nnz < 0)  /* nnz must be >= 0 */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
    stats [COLAMD_INFO1] = nnz ;
    COLAMD_DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
    return (false) ;
  }
  
  if (p [0] != 0)
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
    stats [COLAMD_INFO1] = p [0] ;
    COLAMD_DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
    return (false) ;
  }
  
  /* === If no knobs, set default knobs =================================== */
  
  if (!knobs)
  {
    colamd_set_defaults (default_knobs) ;
    knobs = default_knobs ;
  }
  
  /* === Allocate the Row and Col arrays from array A ===================== */
  
  Col_size = colamd_c (n_col) ;
  Row_size = colamd_r (n_row) ;
  need = 2*nnz + n_col + Col_size + Row_size ;
  
  if (need > Alen)
  {
    /* not enough space in array A to perform the ordering */
    stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
    stats [COLAMD_INFO1] = need ;
    stats [COLAMD_INFO2] = Alen ;
    COLAMD_DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
    return (false) ;
  }
  
  Alen -= Col_size + Row_size ;
  Col = (colamd_col<Index> *) &A [Alen] ;
  Row = (Colamd_Row<Index> *) &A [Alen + Col_size] ;

  /* === Construct the row and column data structures ===================== */
  
  if (!Eigen::internal::init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
  {
    /* input matrix is invalid */
    COLAMD_DEBUG0 (("colamd: Matrix invalid\n")) ;
    return (false) ;
  }
  
  /* === Initialize scores, kill dense rows/columns ======================= */

  Eigen::internal::init_scoring (n_row, n_col, Row, Col, A, p, knobs,
		&n_row2, &n_col2, &max_deg) ;
  
  /* === Order the supercolumns =========================================== */
  
  ngarbage = Eigen::internal::find_ordering (n_row, n_col, Alen, Row, Col, A, p,
			    n_col2, max_deg, 2*nnz) ;
  
  /* === Order the non-principal columns ================================== */
  
  Eigen::internal::order_children (n_col, Col, p) ;
  
  /* === Return statistics in stats ======================================= */
  
  stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
  stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
  stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
  COLAMD_DEBUG0 (("colamd: done.\n")) ; 
  return (true) ;
}

/* ========================================================================== */
/* === NON-USER-CALLABLE ROUTINES: ========================================== */
/* ========================================================================== */

/* There are no user-callable routines beyond this point in the file */


/* ========================================================================== */
/* === init_rows_cols ======================================================= */
/* ========================================================================== */

/*
  Takes the column form of the matrix in A and creates the row form of the
  matrix.  Also, row and column attributes are stored in the Col and Row
  structs.  If the columns are un-sorted or contain duplicate row indices,
  this routine will also sort and remove duplicate row indices from the
  column form of the matrix.  Returns false if the matrix is invalid,
  true otherwise.  Not user-callable.
*/
template <typename Index>
static Index init_rows_cols  /* returns true if OK, or false otherwise */
  (
    /* === Parameters ======================================================= */

    Index n_row,      /* number of rows of A */
    Index n_col,      /* number of columns of A */
    Colamd_Row<Index> Row [],    /* of size n_row+1 */
    colamd_col<Index> Col [],    /* of size n_col+1 */
    Index A [],     /* row indices of A, of size Alen */
    Index p [],     /* pointers to columns in A, of size n_col+1 */
    Index stats [COLAMD_STATS]  /* colamd statistics */ 
    )
{
  /* === Local variables ================================================== */

  Index col ;     /* a column index */
  Index row ;     /* a row index */
  Index *cp ;     /* a column pointer */
  Index *cp_end ;   /* a pointer to the end of a column */
  Index *rp ;     /* a row pointer */
  Index *rp_end ;   /* a pointer to the end of a row */
  Index last_row ;    /* previous row */

  /* === Initialize columns, and check column pointers ==================== */

  for (col = 0 ; col < n_col ; col++)
  {
    Col [col].start = p [col] ;
    Col [col].length = p [col+1] - p [col] ;

    if (Col [col].length < 0)
    {
      /* column pointers must be non-decreasing */
      stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
      stats [COLAMD_INFO1] = col ;
      stats [COLAMD_INFO2] = Col [col].length ;
      COLAMD_DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
      return (false) ;
    }

    Col [col].shared1.thickness = 1 ;
    Col [col].shared2.score = 0 ;
    Col [col].shared3.prev = COLAMD_EMPTY ;
    Col [col].shared4.degree_next = COLAMD_EMPTY ;
  }

  /* p [0..n_col] no longer needed, used as "head" in subsequent routines */

  /* === Scan columns, compute row degrees, and check row indices ========= */

  stats [COLAMD_INFO3] = 0 ;  /* number of duplicate or unsorted row indices*/

  for (row = 0 ; row < n_row ; row++)
  {
    Row [row].length = 0 ;
    Row [row].shared2.mark = -1 ;
  }

  for (col = 0 ; col < n_col ; col++)
  {
    last_row = -1 ;

    cp = &A [p [col]] ;
    cp_end = &A [p [col+1]] ;

    while (cp < cp_end)
    {
      row = *cp++ ;

      /* make sure row indices within range */
      if (row < 0 || row >= n_row)
      {
	stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
	stats [COLAMD_INFO1] = col ;
	stats [COLAMD_INFO2] = row ;
	stats [COLAMD_INFO3] = n_row ;
	COLAMD_DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
	return (false) ;
      }

      if (row <= last_row || Row [row].shared2.mark == col)
      {
	/* row index are unsorted or repeated (or both), thus col */
	/* is jumbled.  This is a notice, not an error condition. */
	stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
	stats [COLAMD_INFO1] = col ;
	stats [COLAMD_INFO2] = row ;
	(stats [COLAMD_INFO3]) ++ ;
	COLAMD_DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
      }

      if (Row [row].shared2.mark != col)
      {
	Row [row].length++ ;
      }
      else
      {
	/* this is a repeated entry in the column, */
	/* it will be removed */
	Col [col].length-- ;
      }

      /* mark the row as having been seen in this column */
      Row [row].shared2.mark = col ;

      last_row = row ;
    }
  }

  /* === Compute row pointers ============================================= */

  /* row form of the matrix starts directly after the column */
  /* form of matrix in A */
  Row [0].start = p [n_col] ;
  Row [0].shared1.p = Row [0].start ;
  Row [0].shared2.mark = -1 ;
  for (row = 1 ; row < n_row ; row++)
  {
    Row [row].start = Row [row-1].start + Row [row-1].length ;
    Row [row].shared1.p = Row [row].start ;
    Row [row].shared2.mark = -1 ;
  }

  /* === Create row form ================================================== */

  if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
  {
    /* if cols jumbled, watch for repeated row indices */
    for (col = 0 ; col < n_col ; col++)
    {
      cp = &A [p [col]] ;
      cp_end = &A [p [col+1]] ;
      while (cp < cp_end)
      {
	row = *cp++ ;
	if (Row [row].shared2.mark != col)
	{
	  A [(Row [row].shared1.p)++] = col ;
	  Row [row].shared2.mark = col ;
	}
      }
    }
  }
  else
  {
    /* if cols not jumbled, we don't need the mark (this is faster) */
    for (col = 0 ; col < n_col ; col++)
    {
      cp = &A [p [col]] ;
      cp_end = &A [p [col+1]] ;
      while (cp < cp_end)
      {
	A [(Row [*cp++].shared1.p)++] = col ;
      }
    }
  }

  /* === Clear the row marks and set row degrees ========================== */

  for (row = 0 ; row < n_row ; row++)
  {
    Row [row].shared2.mark = 0 ;
    Row [row].shared1.degree = Row [row].length ;
  }

  /* === See if we need to re-create columns ============================== */

  if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
  {
    COLAMD_DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;


    /* === Compute col pointers ========================================= */

    /* col form of the matrix starts at A [0]. */
    /* Note, we may have a gap between the col form and the row */
    /* form if there were duplicate entries, if so, it will be */
    /* removed upon the first garbage collection */
    Col [0].start = 0 ;
    p [0] = Col [0].start ;
    for (col = 1 ; col < n_col ; col++)
    {
      /* note that the lengths here are for pruned columns, i.e. */
      /* no duplicate row indices will exist for these columns */
      Col [col].start = Col [col-1].start + Col [col-1].length ;
      p [col] = Col [col].start ;
    }

    /* === Re-create col form =========================================== */

    for (row = 0 ; row < n_row ; row++)
    {
      rp = &A [Row [row].start] ;
      rp_end = rp + Row [row].length ;
      while (rp < rp_end)
      {
	A [(p [*rp++])++] = row ;
      }
    }
  }

  /* === Done.  Matrix is not (or no longer) jumbled ====================== */

  return (true) ;
}


/* ========================================================================== */
/* === init_scoring ========================================================= */
/* ========================================================================== */

/*
  Kills dense or empty columns and rows, calculates an initial score for
  each column, and places all columns in the degree lists.  Not user-callable.
*/
template <typename Index>
static void init_scoring
  (
    /* === Parameters ======================================================= */

    Index n_row,      /* number of rows of A */
    Index n_col,      /* number of columns of A */
    Colamd_Row<Index> Row [],    /* of size n_row+1 */
    colamd_col<Index> Col [],    /* of size n_col+1 */
    Index A [],     /* column form and row form of A */
    Index head [],    /* of size n_col+1 */
    double knobs [COLAMD_KNOBS],/* parameters */
    Index *p_n_row2,    /* number of non-dense, non-empty rows */
    Index *p_n_col2,    /* number of non-dense, non-empty columns */
    Index *p_max_deg    /* maximum row degree */
    )
{
  /* === Local variables ================================================== */

  Index c ;     /* a column index */
  Index r, row ;    /* a row index */
  Index *cp ;     /* a column pointer */
  Index deg ;     /* degree of a row or column */
  Index *cp_end ;   /* a pointer to the end of a column */
  Index *new_cp ;   /* new column pointer */
  Index col_length ;    /* length of pruned column */
  Index score ;     /* current column score */
  Index n_col2 ;    /* number of non-dense, non-empty columns */
  Index n_row2 ;    /* number of non-dense, non-empty rows */
  Index dense_row_count ; /* remove rows with more entries than this */
  Index dense_col_count ; /* remove cols with more entries than this */
  Index min_score ;   /* smallest column score */
  Index max_deg ;   /* maximum row degree */
  Index next_col ;    /* Used to add to degree list.*/


  /* === Extract knobs ==================================================== */

  dense_row_count = COLAMD_MAX (0, COLAMD_MIN (knobs [COLAMD_DENSE_ROW] * n_col, n_col)) ;
  dense_col_count = COLAMD_MAX (0, COLAMD_MIN (knobs [COLAMD_DENSE_COL] * n_row, n_row)) ;
  COLAMD_DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
  max_deg = 0 ;
  n_col2 = n_col ;
  n_row2 = n_row ;

  /* === Kill empty columns =============================================== */

  /* Put the empty columns at the end in their natural order, so that LU */
  /* factorization can proceed as far as possible. */
  for (c = n_col-1 ; c >= 0 ; c--)
  {
    deg = Col [c].length ;
    if (deg == 0)
    {
      /* this is a empty column, kill and order it last */
      Col [c].shared2.order = --n_col2 ;
      KILL_PRINCIPAL_COL (c) ;
    }
  }
  COLAMD_DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;

  /* === Kill dense columns =============================================== */

  /* Put the dense columns at the end, in their natural order */
  for (c = n_col-1 ; c >= 0 ; c--)
  {
    /* skip any dead columns */
    if (COL_IS_DEAD (c))
    {
      continue ;
    }
    deg = Col [c].length ;
    if (deg > dense_col_count)
    {
      /* this is a dense column, kill and order it last */
      Col [c].shared2.order = --n_col2 ;
      /* decrement the row degrees */
      cp = &A [Col [c].start] ;
      cp_end = cp + Col [c].length ;
      while (cp < cp_end)
      {
	Row [*cp++].shared1.degree-- ;
      }
      KILL_PRINCIPAL_COL (c) ;
    }
  }
  COLAMD_DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;

  /* === Kill dense and empty rows ======================================== */

  for (r = 0 ; r < n_row ; r++)
  {
    deg = Row [r].shared1.degree ;
    COLAMD_ASSERT (deg >= 0 && deg <= n_col) ;
    if (deg > dense_row_count || deg == 0)
    {
      /* kill a dense or empty row */
      KILL_ROW (r) ;
      --n_row2 ;
    }
    else
    {
      /* keep track of max degree of remaining rows */
      max_deg = COLAMD_MAX (max_deg, deg) ;
    }
  }
  COLAMD_DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;

  /* === Compute initial column scores ==================================== */

  /* At this point the row degrees are accurate.  They reflect the number */
  /* of "live" (non-dense) columns in each row.  No empty rows exist. */
  /* Some "live" columns may contain only dead rows, however.  These are */
  /* pruned in the code below. */

  /* now find the initial matlab score for each column */
  for (c = n_col-1 ; c >= 0 ; c--)
  {
    /* skip dead column */
    if (COL_IS_DEAD (c))
    {
      continue ;
    }
    score = 0 ;
    cp = &A [Col [c].start] ;
    new_cp = cp ;
    cp_end = cp + Col [c].length ;
    while (cp < cp_end)
    {
      /* get a row */
      row = *cp++ ;
      /* skip if dead */
      if (ROW_IS_DEAD (row))
      {
	continue ;
      }
      /* compact the column */
      *new_cp++ = row ;
      /* add row's external degree */
      score += Row [row].shared1.degree - 1 ;
      /* guard against integer overflow */
      score = COLAMD_MIN (score, n_col) ;
    }
    /* determine pruned column length */
    col_length = (Index) (new_cp - &A [Col [c].start]) ;
    if (col_length == 0)
    {
      /* a newly-made null column (all rows in this col are "dense" */
      /* and have already been killed) */
      COLAMD_DEBUG2 (("Newly null killed: %d\n", c)) ;
      Col [c].shared2.order = --n_col2 ;
      KILL_PRINCIPAL_COL (c) ;
    }
    else
    {
      /* set column length and set score */
      COLAMD_ASSERT (score >= 0) ;
      COLAMD_ASSERT (score <= n_col) ;
      Col [c].length = col_length ;
      Col [c].shared2.score = score ;
    }
  }
  COLAMD_DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
		  n_col-n_col2)) ;

  /* At this point, all empty rows and columns are dead.  All live columns */
  /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
  /* yet).  Rows may contain dead columns, but all live rows contain at */
  /* least one live column. */

  /* === Initialize degree lists ========================================== */


  /* clear the hash buckets */
  for (c = 0 ; c <= n_col ; c++)
  {
    head [c] = COLAMD_EMPTY ;
  }
  min_score = n_col ;
  /* place in reverse order, so low column indices are at the front */
  /* of the lists.  This is to encourage natural tie-breaking */
  for (c = n_col-1 ; c >= 0 ; c--)
  {
    /* only add principal columns to degree lists */
    if (COL_IS_ALIVE (c))
    {
      COLAMD_DEBUG4 (("place %d score %d minscore %d ncol %d\n",
		      c, Col [c].shared2.score, min_score, n_col)) ;

      /* === Add columns score to DList =============================== */

      score = Col [c].shared2.score ;

      COLAMD_ASSERT (min_score >= 0) ;
      COLAMD_ASSERT (min_score <= n_col) ;
      COLAMD_ASSERT (score >= 0) ;
      COLAMD_ASSERT (score <= n_col) ;
      COLAMD_ASSERT (head [score] >= COLAMD_EMPTY) ;

      /* now add this column to dList at proper score location */
      next_col = head [score] ;
      Col [c].shared3.prev = COLAMD_EMPTY ;
      Col [c].shared4.degree_next = next_col ;

      /* if there already was a column with the same score, set its */
      /* previous pointer to this new column */
      if (next_col != COLAMD_EMPTY)
      {
	Col [next_col].shared3.prev = c ;
      }
      head [score] = c ;

      /* see if this score is less than current min */
      min_score = COLAMD_MIN (min_score, score) ;


    }
  }


  /* === Return number of remaining columns, and max row degree =========== */

  *p_n_col2 = n_col2 ;
  *p_n_row2 = n_row2 ;
  *p_max_deg = max_deg ;
}


/* ========================================================================== */
/* === find_ordering ======================================================== */
/* ========================================================================== */

/*
  Order the principal columns of the supercolumn form of the matrix
  (no supercolumns on input).  Uses a minimum approximate column minimum
  degree ordering method.  Not user-callable.
*/
template <typename Index>
static Index find_ordering /* return the number of garbage collections */
  (
    /* === Parameters ======================================================= */

    Index n_row,      /* number of rows of A */
    Index n_col,      /* number of columns of A */
    Index Alen,     /* size of A, 2*nnz + n_col or larger */
    Colamd_Row<Index> Row [],    /* of size n_row+1 */
    colamd_col<Index> Col [],    /* of size n_col+1 */
    Index A [],     /* column form and row form of A */
    Index head [],    /* of size n_col+1 */
    Index n_col2,     /* Remaining columns to order */
    Index max_deg,    /* Maximum row degree */
    Index pfree     /* index of first free slot (2*nnz on entry) */
    )
{
  /* === Local variables ================================================== */

  Index k ;     /* current pivot ordering step */
  Index pivot_col ;   /* current pivot column */
  Index *cp ;     /* a column pointer */
  Index *rp ;     /* a row pointer */
  Index pivot_row ;   /* current pivot row */
  Index *new_cp ;   /* modified column pointer */
  Index *new_rp ;   /* modified row pointer */
  Index pivot_row_start ; /* pointer to start of pivot row */
  Index pivot_row_degree ;  /* number of columns in pivot row */
  Index pivot_row_length ;  /* number of supercolumns in pivot row */
  Index pivot_col_score ; /* score of pivot column */
  Index needed_memory ;   /* free space needed for pivot row */
  Index *cp_end ;   /* pointer to the end of a column */
  Index *rp_end ;   /* pointer to the end of a row */
  Index row ;     /* a row index */
  Index col ;     /* a column index */
  Index max_score ;   /* maximum possible score */
  Index cur_score ;   /* score of current column */
  unsigned int hash ;   /* hash value for supernode detection */
  Index head_column ;   /* head of hash bucket */
  Index first_col ;   /* first column in hash bucket */
  Index tag_mark ;    /* marker value for mark array */
  Index row_mark ;    /* Row [row].shared2.mark */
  Index set_difference ;  /* set difference size of row with pivot row */
  Index min_score ;   /* smallest column score */
  Index col_thickness ;   /* "thickness" (no. of columns in a supercol) */
  Index max_mark ;    /* maximum value of tag_mark */
  Index pivot_col_thickness ; /* number of columns represented by pivot col */
  Index prev_col ;    /* Used by Dlist operations. */
  Index next_col ;    /* Used by Dlist operations. */
  Index ngarbage ;    /* number of garbage collections performed */


  /* === Initialization and clear mark ==================================== */

  max_mark = INT_MAX - n_col ;  /* INT_MAX defined in <limits.h> */
  tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
  min_score = 0 ;
  ngarbage = 0 ;
  COLAMD_DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;

  /* === Order the columns ================================================ */

  for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
  {

    /* === Select pivot column, and order it ============================ */

    /* make sure degree list isn't empty */
    COLAMD_ASSERT (min_score >= 0) ;
    COLAMD_ASSERT (min_score <= n_col) ;
    COLAMD_ASSERT (head [min_score] >= COLAMD_EMPTY) ;

    /* get pivot column from head of minimum degree list */
    while (head [min_score] == COLAMD_EMPTY && min_score < n_col)
    {
      min_score++ ;
    }
    pivot_col = head [min_score] ;
    COLAMD_ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
    next_col = Col [pivot_col].shared4.degree_next ;
    head [min_score] = next_col ;
    if (next_col != COLAMD_EMPTY)
    {
      Col [next_col].shared3.prev = COLAMD_EMPTY ;
    }

    COLAMD_ASSERT (COL_IS_ALIVE (pivot_col)) ;
    COLAMD_DEBUG3 (("Pivot col: %d\n", pivot_col)) ;

    /* remember score for defrag check */
    pivot_col_score = Col [pivot_col].shared2.score ;

    /* the pivot column is the kth column in the pivot order */
    Col [pivot_col].shared2.order = k ;

    /* increment order count by column thickness */
    pivot_col_thickness = Col [pivot_col].shared1.thickness ;
    k += pivot_col_thickness ;
    COLAMD_ASSERT (pivot_col_thickness > 0) ;

    /* === Garbage_collection, if necessary ============================= */

    needed_memory = COLAMD_MIN (pivot_col_score, n_col - k) ;
    if (pfree + needed_memory >= Alen)
    {
      pfree = Eigen::internal::garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
      ngarbage++ ;
      /* after garbage collection we will have enough */
      COLAMD_ASSERT (pfree + needed_memory < Alen) ;
      /* garbage collection has wiped out the Row[].shared2.mark array */
      tag_mark = Eigen::internal::clear_mark (n_row, Row) ;

    }

    /* === Compute pivot row pattern ==================================== */

    /* get starting location for this new merged row */
    pivot_row_start = pfree ;

    /* initialize new row counts to zero */
    pivot_row_degree = 0 ;

    /* tag pivot column as having been visited so it isn't included */
    /* in merged pivot row */
    Col [pivot_col].shared1.thickness = -pivot_col_thickness ;

    /* pivot row is the union of all rows in the pivot column pattern */
    cp = &A [Col [pivot_col].start] ;
    cp_end = cp + Col [pivot_col].length ;
    while (cp < cp_end)
    {
      /* get a row */
      row = *cp++ ;
      COLAMD_DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
      /* skip if row is dead */
      if (ROW_IS_DEAD (row))
      {
	continue ;
      }
      rp = &A [Row [row].start] ;
      rp_end = rp + Row [row].length ;
      while (rp < rp_end)
      {
	/* get a column */
	col = *rp++ ;
	/* add the column, if alive and untagged */
	col_thickness = Col [col].shared1.thickness ;
	if (col_thickness > 0 && COL_IS_ALIVE (col))
	{
	  /* tag column in pivot row */
	  Col [col].shared1.thickness = -col_thickness ;
	  COLAMD_ASSERT (pfree < Alen) ;
	  /* place column in pivot row */
	  A [pfree++] = col ;
	  pivot_row_degree += col_thickness ;
	}
      }
    }

    /* clear tag on pivot column */
    Col [pivot_col].shared1.thickness = pivot_col_thickness ;
    max_deg = COLAMD_MAX (max_deg, pivot_row_degree) ;


    /* === Kill all rows used to construct pivot row ==================== */

    /* also kill pivot row, temporarily */
    cp = &A [Col [pivot_col].start] ;
    cp_end = cp + Col [pivot_col].length ;
    while (cp < cp_end)
    {
      /* may be killing an already dead row */
      row = *cp++ ;
      COLAMD_DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
      KILL_ROW (row) ;
    }

    /* === Select a row index to use as the new pivot row =============== */

    pivot_row_length = pfree - pivot_row_start ;
    if (pivot_row_length > 0)
    {
      /* pick the "pivot" row arbitrarily (first row in col) */
      pivot_row = A [Col [pivot_col].start] ;
      COLAMD_DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
    }
    else
    {
      /* there is no pivot row, since it is of zero length */
      pivot_row = COLAMD_EMPTY ;
      COLAMD_ASSERT (pivot_row_length == 0) ;
    }
    COLAMD_ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;

    /* === Approximate degree computation =============================== */

    /* Here begins the computation of the approximate degree.  The column */
    /* score is the sum of the pivot row "length", plus the size of the */
    /* set differences of each row in the column minus the pattern of the */
    /* pivot row itself.  The column ("thickness") itself is also */
    /* excluded from the column score (we thus use an approximate */
    /* external degree). */

    /* The time taken by the following code (compute set differences, and */
    /* add them up) is proportional to the size of the data structure */
    /* being scanned - that is, the sum of the sizes of each column in */
    /* the pivot row.  Thus, the amortized time to compute a column score */
    /* is proportional to the size of that column (where size, in this */
    /* context, is the column "length", or the number of row indices */
    /* in that column).  The number of row indices in a column is */
    /* monotonically non-decreasing, from the length of the original */
    /* column on input to colamd. */

    /* === Compute set differences ====================================== */

    COLAMD_DEBUG3 (("** Computing set differences phase. **\n")) ;

    /* pivot row is currently dead - it will be revived later. */

    COLAMD_DEBUG3 (("Pivot row: ")) ;
    /* for each column in pivot row */
    rp = &A [pivot_row_start] ;
    rp_end = rp + pivot_row_length ;
    while (rp < rp_end)
    {
      col = *rp++ ;
      COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
      COLAMD_DEBUG3 (("Col: %d\n", col)) ;

      /* clear tags used to construct pivot row pattern */
      col_thickness = -Col [col].shared1.thickness ;
      COLAMD_ASSERT (col_thickness > 0) ;
      Col [col].shared1.thickness = col_thickness ;

      /* === Remove column from degree list =========================== */

      cur_score = Col [col].shared2.score ;
      prev_col = Col [col].shared3.prev ;
      next_col = Col [col].shared4.degree_next ;
      COLAMD_ASSERT (cur_score >= 0) ;
      COLAMD_ASSERT (cur_score <= n_col) ;
      COLAMD_ASSERT (cur_score >= COLAMD_EMPTY) ;
      if (prev_col == COLAMD_EMPTY)
      {
	head [cur_score] = next_col ;
      }
      else
      {
	Col [prev_col].shared4.degree_next = next_col ;
      }
      if (next_col != COLAMD_EMPTY)
      {
	Col [next_col].shared3.prev = prev_col ;
      }

      /* === Scan the column ========================================== */

      cp = &A [Col [col].start] ;
      cp_end = cp + Col [col].length ;
      while (cp < cp_end)
      {
	/* get a row */
	row = *cp++ ;
	row_mark = Row [row].shared2.mark ;
	/* skip if dead */
	if (ROW_IS_MARKED_DEAD (row_mark))
	{
	  continue ;
	}
	COLAMD_ASSERT (row != pivot_row) ;
	set_difference = row_mark - tag_mark ;
	/* check if the row has been seen yet */
	if (set_difference < 0)
	{
	  COLAMD_ASSERT (Row [row].shared1.degree <= max_deg) ;
	  set_difference = Row [row].shared1.degree ;
	}
	/* subtract column thickness from this row's set difference */
	set_difference -= col_thickness ;
	COLAMD_ASSERT (set_difference >= 0) ;
	/* absorb this row if the set difference becomes zero */
	if (set_difference == 0)
	{
	  COLAMD_DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
	  KILL_ROW (row) ;
	}
	else
	{
	  /* save the new mark */
	  Row [row].shared2.mark = set_difference + tag_mark ;
	}
      }
    }


    /* === Add up set differences for each column ======================= */

    COLAMD_DEBUG3 (("** Adding set differences phase. **\n")) ;

    /* for each column in pivot row */
    rp = &A [pivot_row_start] ;
    rp_end = rp + pivot_row_length ;
    while (rp < rp_end)
    {
      /* get a column */
      col = *rp++ ;
      COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
      hash = 0 ;
      cur_score = 0 ;
      cp = &A [Col [col].start] ;
      /* compact the column */
      new_cp = cp ;
      cp_end = cp + Col [col].length ;

      COLAMD_DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;

      while (cp < cp_end)
      {
	/* get a row */
	row = *cp++ ;
	COLAMD_ASSERT(row >= 0 && row < n_row) ;
	row_mark = Row [row].shared2.mark ;
	/* skip if dead */
	if (ROW_IS_MARKED_DEAD (row_mark))
	{
	  continue ;
	}
	COLAMD_ASSERT (row_mark > tag_mark) ;
	/* compact the column */
	*new_cp++ = row ;
	/* compute hash function */
	hash += row ;
	/* add set difference */
	cur_score += row_mark - tag_mark ;
	/* integer overflow... */
	cur_score = COLAMD_MIN (cur_score, n_col) ;
      }

      /* recompute the column's length */
      Col [col].length = (Index) (new_cp - &A [Col [col].start]) ;

      /* === Further mass elimination ================================= */

      if (Col [col].length == 0)
      {
	COLAMD_DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
	/* nothing left but the pivot row in this column */
	KILL_PRINCIPAL_COL (col) ;
	pivot_row_degree -= Col [col].shared1.thickness ;
	COLAMD_ASSERT (pivot_row_degree >= 0) ;
	/* order it */
	Col [col].shared2.order = k ;
	/* increment order count by column thickness */
	k += Col [col].shared1.thickness ;
      }
      else
      {
	/* === Prepare for supercolumn detection ==================== */

	COLAMD_DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;

	/* save score so far */
	Col [col].shared2.score = cur_score ;

	/* add column to hash table, for supercolumn detection */
	hash %= n_col + 1 ;

	COLAMD_DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
	COLAMD_ASSERT (hash <= n_col) ;

	head_column = head [hash] ;
	if (head_column > COLAMD_EMPTY)
	{
	  /* degree list "hash" is non-empty, use prev (shared3) of */
	  /* first column in degree list as head of hash bucket */
	  first_col = Col [head_column].shared3.headhash ;
	  Col [head_column].shared3.headhash = col ;
	}
	else
	{
	  /* degree list "hash" is empty, use head as hash bucket */
	  first_col = - (head_column + 2) ;
	  head [hash] = - (col + 2) ;
	}
	Col [col].shared4.hash_next = first_col ;

	/* save hash function in Col [col].shared3.hash */
	Col [col].shared3.hash = (Index) hash ;
	COLAMD_ASSERT (COL_IS_ALIVE (col)) ;
      }
    }

    /* The approximate external column degree is now computed.  */

    /* === Supercolumn detection ======================================== */

    COLAMD_DEBUG3 (("** Supercolumn detection phase. **\n")) ;

    Eigen::internal::detect_super_cols (Col, A, head, pivot_row_start, pivot_row_length) ;

    /* === Kill the pivotal column ====================================== */

    KILL_PRINCIPAL_COL (pivot_col) ;

    /* === Clear mark =================================================== */

    tag_mark += (max_deg + 1) ;
    if (tag_mark >= max_mark)
    {
      COLAMD_DEBUG2 (("clearing tag_mark\n")) ;
      tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
    }

    /* === Finalize the new pivot row, and column scores ================ */

    COLAMD_DEBUG3 (("** Finalize scores phase. **\n")) ;

    /* for each column in pivot row */
    rp = &A [pivot_row_start] ;
    /* compact the pivot row */
    new_rp = rp ;
    rp_end = rp + pivot_row_length ;
    while (rp < rp_end)
    {
      col = *rp++ ;
      /* skip dead columns */
      if (COL_IS_DEAD (col))
      {
	continue ;
      }
      *new_rp++ = col ;
      /* add new pivot row to column */
      A [Col [col].start + (Col [col].length++)] = pivot_row ;

      /* retrieve score so far and add on pivot row's degree. */
      /* (we wait until here for this in case the pivot */
      /* row's degree was reduced due to mass elimination). */
      cur_score = Col [col].shared2.score + pivot_row_degree ;

      /* calculate the max possible score as the number of */
      /* external columns minus the 'k' value minus the */
      /* columns thickness */
      max_score = n_col - k - Col [col].shared1.thickness ;

      /* make the score the external degree of the union-of-rows */
      cur_score -= Col [col].shared1.thickness ;

      /* make sure score is less or equal than the max score */
      cur_score = COLAMD_MIN (cur_score, max_score) ;
      COLAMD_ASSERT (cur_score >= 0) ;

      /* store updated score */
      Col [col].shared2.score = cur_score ;

      /* === Place column back in degree list ========================= */

      COLAMD_ASSERT (min_score >= 0) ;
      COLAMD_ASSERT (min_score <= n_col) ;
      COLAMD_ASSERT (cur_score >= 0) ;
      COLAMD_ASSERT (cur_score <= n_col) ;
      COLAMD_ASSERT (head [cur_score] >= COLAMD_EMPTY) ;
      next_col = head [cur_score] ;
      Col [col].shared4.degree_next = next_col ;
      Col [col].shared3.prev = COLAMD_EMPTY ;
      if (next_col != COLAMD_EMPTY)
      {
	Col [next_col].shared3.prev = col ;
      }
      head [cur_score] = col ;

      /* see if this score is less than current min */
      min_score = COLAMD_MIN (min_score, cur_score) ;

    }

    /* === Resurrect the new pivot row ================================== */

    if (pivot_row_degree > 0)
    {
      /* update pivot row length to reflect any cols that were killed */
      /* during super-col detection and mass elimination */
      Row [pivot_row].start  = pivot_row_start ;
      Row [pivot_row].length = (Index) (new_rp - &A[pivot_row_start]) ;
      Row [pivot_row].shared1.degree = pivot_row_degree ;
      Row [pivot_row].shared2.mark = 0 ;
      /* pivot row is no longer dead */
    }
  }

  /* === All principal columns have now been ordered ====================== */

  return (ngarbage) ;
}


/* ========================================================================== */
/* === order_children ======================================================= */
/* ========================================================================== */

/*
  The find_ordering routine has ordered all of the principal columns (the
  representatives of the supercolumns).  The non-principal columns have not
  yet been ordered.  This routine orders those columns by walking up the
  parent tree (a column is a child of the column which absorbed it).  The
  final permutation vector is then placed in p [0 ... n_col-1], with p [0]
  being the first column, and p [n_col-1] being the last.  It doesn't look
  like it at first glance, but be assured that this routine takes time linear
  in the number of columns.  Although not immediately obvious, the time
  taken by this routine is O (n_col), that is, linear in the number of
  columns.  Not user-callable.
*/
template <typename Index>
static inline  void order_children
(
  /* === Parameters ======================================================= */

  Index n_col,      /* number of columns of A */
  colamd_col<Index> Col [],    /* of size n_col+1 */
  Index p []      /* p [0 ... n_col-1] is the column permutation*/
  )
{
  /* === Local variables ================================================== */

  Index i ;     /* loop counter for all columns */
  Index c ;     /* column index */
  Index parent ;    /* index of column's parent */
  Index order ;     /* column's order */

  /* === Order each non-principal column ================================== */

  for (i = 0 ; i < n_col ; i++)
  {
    /* find an un-ordered non-principal column */
    COLAMD_ASSERT (COL_IS_DEAD (i)) ;
    if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == COLAMD_EMPTY)
    {
      parent = i ;
      /* once found, find its principal parent */
      do
      {
	parent = Col [parent].shared1.parent ;
      } while (!COL_IS_DEAD_PRINCIPAL (parent)) ;

      /* now, order all un-ordered non-principal columns along path */
      /* to this parent.  collapse tree at the same time */
      c = i ;
      /* get order of parent */
      order = Col [parent].shared2.order ;

      do
      {
	COLAMD_ASSERT (Col [c].shared2.order == COLAMD_EMPTY) ;

	/* order this column */
	Col [c].shared2.order = order++ ;
	/* collaps tree */
	Col [c].shared1.parent = parent ;

	/* get immediate parent of this column */
	c = Col [c].shared1.parent ;

	/* continue until we hit an ordered column.  There are */
	/* guarranteed not to be anymore unordered columns */
	/* above an ordered column */
      } while (Col [c].shared2.order == COLAMD_EMPTY) ;

      /* re-order the super_col parent to largest order for this group */
      Col [parent].shared2.order = order ;
    }
  }

  /* === Generate the permutation ========================================= */

  for (c = 0 ; c < n_col ; c++)
  {
    p [Col [c].shared2.order] = c ;
  }
}


/* ========================================================================== */
/* === detect_super_cols ==================================================== */
/* ========================================================================== */

/*
  Detects supercolumns by finding matches between columns in the hash buckets.
  Check amongst columns in the set A [row_start ... row_start + row_length-1].
  The columns under consideration are currently *not* in the degree lists,
  and have already been placed in the hash buckets.

  The hash bucket for columns whose hash function is equal to h is stored
  as follows:

  if head [h] is >= 0, then head [h] contains a degree list, so:

  head [h] is the first column in degree bucket h.
  Col [head [h]].headhash gives the first column in hash bucket h.

  otherwise, the degree list is empty, and:

  -(head [h] + 2) is the first column in hash bucket h.

  For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
  column" pointer.  Col [c].shared3.hash is used instead as the hash number
  for that column.  The value of Col [c].shared4.hash_next is the next column
  in the same hash bucket.

  Assuming no, or "few" hash collisions, the time taken by this routine is
  linear in the sum of the sizes (lengths) of each column whose score has
  just been computed in the approximate degree computation.
  Not user-callable.
*/
template <typename Index>
static void detect_super_cols
(
  /* === Parameters ======================================================= */
  
  colamd_col<Index> Col [],    /* of size n_col+1 */
  Index A [],     /* row indices of A */
  Index head [],    /* head of degree lists and hash buckets */
  Index row_start,    /* pointer to set of columns to check */
  Index row_length    /* number of columns to check */
)
{
  /* === Local variables ================================================== */

  Index hash ;      /* hash value for a column */
  Index *rp ;     /* pointer to a row */
  Index c ;     /* a column index */
  Index super_c ;   /* column index of the column to absorb into */
  Index *cp1 ;      /* column pointer for column super_c */
  Index *cp2 ;      /* column pointer for column c */
  Index length ;    /* length of column super_c */
  Index prev_c ;    /* column preceding c in hash bucket */
  Index i ;     /* loop counter */
  Index *rp_end ;   /* pointer to the end of the row */
  Index col ;     /* a column index in the row to check */
  Index head_column ;   /* first column in hash bucket or degree list */
  Index first_col ;   /* first column in hash bucket */

  /* === Consider each column in the row ================================== */

  rp = &A [row_start] ;
  rp_end = rp + row_length ;
  while (rp < rp_end)
  {
    col = *rp++ ;
    if (COL_IS_DEAD (col))
    {
      continue ;
    }

    /* get hash number for this column */
    hash = Col [col].shared3.hash ;
    COLAMD_ASSERT (hash <= n_col) ;

    /* === Get the first column in this hash bucket ===================== */

    head_column = head [hash] ;
    if (head_column > COLAMD_EMPTY)
    {
      first_col = Col [head_column].shared3.headhash ;
    }
    else
    {
      first_col = - (head_column + 2) ;
    }

    /* === Consider each column in the hash bucket ====================== */

    for (super_c = first_col ; super_c != COLAMD_EMPTY ;
	 super_c = Col [super_c].shared4.hash_next)
    {
      COLAMD_ASSERT (COL_IS_ALIVE (super_c)) ;
      COLAMD_ASSERT (Col [super_c].shared3.hash == hash) ;
      length = Col [super_c].length ;

      /* prev_c is the column preceding column c in the hash bucket */
      prev_c = super_c ;

      /* === Compare super_c with all columns after it ================ */

      for (c = Col [super_c].shared4.hash_next ;
	   c != COLAMD_EMPTY ; c = Col [c].shared4.hash_next)
      {
	COLAMD_ASSERT (c != super_c) ;
	COLAMD_ASSERT (COL_IS_ALIVE (c)) ;
	COLAMD_ASSERT (Col [c].shared3.hash == hash) ;

	/* not identical if lengths or scores are different */
	if (Col [c].length != length ||
	    Col [c].shared2.score != Col [super_c].shared2.score)
	{
	  prev_c = c ;
	  continue ;
	}

	/* compare the two columns */
	cp1 = &A [Col [super_c].start] ;
	cp2 = &A [Col [c].start] ;

	for (i = 0 ; i < length ; i++)
	{
	  /* the columns are "clean" (no dead rows) */
	  COLAMD_ASSERT (ROW_IS_ALIVE (*cp1))  ;
	  COLAMD_ASSERT (ROW_IS_ALIVE (*cp2))  ;
	  /* row indices will same order for both supercols, */
	  /* no gather scatter nessasary */
	  if (*cp1++ != *cp2++)
	  {
	    break ;
	  }
	}

	/* the two columns are different if the for-loop "broke" */
	if (i != length)
	{
	  prev_c = c ;
	  continue ;
	}

	/* === Got it!  two columns are identical =================== */

	COLAMD_ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;

	Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
	Col [c].shared1.parent = super_c ;
	KILL_NON_PRINCIPAL_COL (c) ;
	/* order c later, in order_children() */
	Col [c].shared2.order = COLAMD_EMPTY ;
	/* remove c from hash bucket */
	Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
      }
    }

    /* === Empty this hash bucket ======================================= */

    if (head_column > COLAMD_EMPTY)
    {
      /* corresponding degree list "hash" is not empty */
      Col [head_column].shared3.headhash = COLAMD_EMPTY ;
    }
    else
    {
      /* corresponding degree list "hash" is empty */
      head [hash] = COLAMD_EMPTY ;
    }
  }
}


/* ========================================================================== */
/* === garbage_collection =================================================== */
/* ========================================================================== */

/*
  Defragments and compacts columns and rows in the workspace A.  Used when
  all avaliable memory has been used while performing row merging.  Returns
  the index of the first free position in A, after garbage collection.  The
  time taken by this routine is linear is the size of the array A, which is
  itself linear in the number of nonzeros in the input matrix.
  Not user-callable.
*/
template <typename Index>
static Index garbage_collection  /* returns the new value of pfree */
  (
    /* === Parameters ======================================================= */
    
    Index n_row,      /* number of rows */
    Index n_col,      /* number of columns */
    Colamd_Row<Index> Row [],    /* row info */
    colamd_col<Index> Col [],    /* column info */
    Index A [],     /* A [0 ... Alen-1] holds the matrix */
    Index *pfree      /* &A [0] ... pfree is in use */
    )
{
  /* === Local variables ================================================== */

  Index *psrc ;     /* source pointer */
  Index *pdest ;    /* destination pointer */
  Index j ;     /* counter */
  Index r ;     /* a row index */
  Index c ;     /* a column index */
  Index length ;    /* length of a row or column */

  /* === Defragment the columns =========================================== */

  pdest = &A[0] ;
  for (c = 0 ; c < n_col ; c++)
  {
    if (COL_IS_ALIVE (c))
    {
      psrc = &A [Col [c].start] ;

      /* move and compact the column */
      COLAMD_ASSERT (pdest <= psrc) ;
      Col [c].start = (Index) (pdest - &A [0]) ;
      length = Col [c].length ;
      for (j = 0 ; j < length ; j++)
      {
	r = *psrc++ ;
	if (ROW_IS_ALIVE (r))
	{
	  *pdest++ = r ;
	}
      }
      Col [c].length = (Index) (pdest - &A [Col [c].start]) ;
    }
  }

  /* === Prepare to defragment the rows =================================== */

  for (r = 0 ; r < n_row ; r++)
  {
    if (ROW_IS_ALIVE (r))
    {
      if (Row [r].length == 0)
      {
	/* this row is of zero length.  cannot compact it, so kill it */
	COLAMD_DEBUG3 (("Defrag row kill\n")) ;
	KILL_ROW (r) ;
      }
      else
      {
	/* save first column index in Row [r].shared2.first_column */
	psrc = &A [Row [r].start] ;
	Row [r].shared2.first_column = *psrc ;
	COLAMD_ASSERT (ROW_IS_ALIVE (r)) ;
	/* flag the start of the row with the one's complement of row */
	*psrc = ONES_COMPLEMENT (r) ;

      }
    }
  }

  /* === Defragment the rows ============================================== */

  psrc = pdest ;
  while (psrc < pfree)
  {
    /* find a negative number ... the start of a row */
    if (*psrc++ < 0)
    {
      psrc-- ;
      /* get the row index */
      r = ONES_COMPLEMENT (*psrc) ;
      COLAMD_ASSERT (r >= 0 && r < n_row) ;
      /* restore first column index */
      *psrc = Row [r].shared2.first_column ;
      COLAMD_ASSERT (ROW_IS_ALIVE (r)) ;

      /* move and compact the row */
      COLAMD_ASSERT (pdest <= psrc) ;
      Row [r].start = (Index) (pdest - &A [0]) ;
      length = Row [r].length ;
      for (j = 0 ; j < length ; j++)
      {
	c = *psrc++ ;
	if (COL_IS_ALIVE (c))
	{
	  *pdest++ = c ;
	}
      }
      Row [r].length = (Index) (pdest - &A [Row [r].start]) ;

    }
  }
  /* ensure we found all the rows */
  COLAMD_ASSERT (debug_rows == 0) ;

  /* === Return the new value of pfree ==================================== */

  return ((Index) (pdest - &A [0])) ;
}


/* ========================================================================== */
/* === clear_mark =========================================================== */
/* ========================================================================== */

/*
  Clears the Row [].shared2.mark array, and returns the new tag_mark.
  Return value is the new tag_mark.  Not user-callable.
*/
template <typename Index>
static inline  Index clear_mark  /* return the new value for tag_mark */
  (
      /* === Parameters ======================================================= */

    Index n_row,    /* number of rows in A */
    Colamd_Row<Index> Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
    )
{
  /* === Local variables ================================================== */

  Index r ;

  for (r = 0 ; r < n_row ; r++)
  {
    if (ROW_IS_ALIVE (r))
    {
      Row [r].shared2.mark = 0 ;
    }
  }
  return (1) ;
}


} // namespace internal 
#endif