Quaternion.h 28.6 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12

#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H
Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen { 

LM's avatar
LM committed
15 16 17 18 19 20 21 22 23 24 25 26 27

/***************************************************************************
* Definition of QuaternionBase<Derived>
* The implementation is at the end of the file
***************************************************************************/

namespace internal {
template<typename Other,
         int OtherRows=Other::RowsAtCompileTime,
         int OtherCols=Other::ColsAtCompileTime>
struct quaternionbase_assign_impl;
}

Don Gagne's avatar
Don Gagne committed
28 29 30 31 32 33
/** \geometry_module \ingroup Geometry_Module
  * \class QuaternionBase
  * \brief Base class for quaternion expressions
  * \tparam Derived derived type (CRTP)
  * \sa class Quaternion
  */
LM's avatar
LM committed
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
template<class Derived>
class QuaternionBase : public RotationBase<Derived, 3>
{
  typedef RotationBase<Derived, 3> Base;
public:
  using Base::operator*;
  using Base::derived;

  typedef typename internal::traits<Derived>::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef typename internal::traits<Derived>::Coefficients Coefficients;
  enum {
    Flags = Eigen::internal::traits<Derived>::Flags
  };

 // typedef typename Matrix<Scalar,4,1> Coefficients;
  /** the type of a 3D vector */
  typedef Matrix<Scalar,3,1> Vector3;
  /** the equivalent rotation matrix type */
  typedef Matrix<Scalar,3,3> Matrix3;
  /** the equivalent angle-axis type */
  typedef AngleAxis<Scalar> AngleAxisType;



  /** \returns the \c x coefficient */
  inline Scalar x() const { return this->derived().coeffs().coeff(0); }
  /** \returns the \c y coefficient */
  inline Scalar y() const { return this->derived().coeffs().coeff(1); }
  /** \returns the \c z coefficient */
  inline Scalar z() const { return this->derived().coeffs().coeff(2); }
  /** \returns the \c w coefficient */
  inline Scalar w() const { return this->derived().coeffs().coeff(3); }

  /** \returns a reference to the \c x coefficient */
  inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
  /** \returns a reference to the \c y coefficient */
  inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
  /** \returns a reference to the \c z coefficient */
  inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
  /** \returns a reference to the \c w coefficient */
  inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }

  /** \returns a read-only vector expression of the imaginary part (x,y,z) */
  inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }

  /** \returns a vector expression of the imaginary part (x,y,z) */
  inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }

  /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
  inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }

  /** \returns a vector expression of the coefficients (x,y,z,w) */
  inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }

  EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
  template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);

// disabled this copy operator as it is giving very strange compilation errors when compiling
// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
//  Derived& operator=(const QuaternionBase& other)
//  { return operator=<Derived>(other); }

  Derived& operator=(const AngleAxisType& aa);
  template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);

  /** \returns a quaternion representing an identity rotation
    * \sa MatrixBase::Identity()
    */
105
  static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
LM's avatar
LM committed
106 107 108

  /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
    */
109
  inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
LM's avatar
LM committed
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

  /** \returns the squared norm of the quaternion's coefficients
    * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
    */
  inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }

  /** \returns the norm of the quaternion's coefficients
    * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
    */
  inline Scalar norm() const { return coeffs().norm(); }

  /** Normalizes the quaternion \c *this
    * \sa normalized(), MatrixBase::normalize() */
  inline void normalize() { coeffs().normalize(); }
  /** \returns a normalized copy of \c *this
    * \sa normalize(), MatrixBase::normalized() */
  inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }

    /** \returns the dot product of \c *this and \a other
    * Geometrically speaking, the dot product of two unit quaternions
    * corresponds to the cosine of half the angle between the two rotations.
    * \sa angularDistance()
    */
  template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }

  template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;

  /** \returns an equivalent 3x3 rotation matrix */
  Matrix3 toRotationMatrix() const;

  /** \returns the quaternion which transform \a a into \a b through a rotation */
  template<typename Derived1, typename Derived2>
  Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);

  template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
  template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);

  /** \returns the quaternion describing the inverse rotation */
  Quaternion<Scalar> inverse() const;

  /** \returns the conjugated quaternion */
  Quaternion<Scalar> conjugate() const;

Don Gagne's avatar
Don Gagne committed
153
  template<class OtherDerived> Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
LM's avatar
LM committed
154 155 156 157 158 159

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  template<class OtherDerived>
Don Gagne's avatar
Don Gagne committed
160
  bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
LM's avatar
LM committed
161 162 163
  { return coeffs().isApprox(other.coeffs(), prec); }

	/** return the result vector of \a v through the rotation*/
164
  EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
LM's avatar
LM committed
165 166 167 168 169 170 171 172 173

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
  {
Don Gagne's avatar
Don Gagne committed
174
    return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
LM's avatar
LM committed
175
  }
Don Gagne's avatar
Don Gagne committed
176

LM's avatar
LM committed
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#ifdef EIGEN_QUATERNIONBASE_PLUGIN
# include EIGEN_QUATERNIONBASE_PLUGIN
#endif
};

/***************************************************************************
* Definition/implementation of Quaternion<Scalar>
***************************************************************************/

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Quaternion
  *
  * \brief The quaternion class used to represent 3D orientations and rotations
  *
Don Gagne's avatar
Don Gagne committed
192
  * \tparam _Scalar the scalar type, i.e., the type of the coefficients
193
  * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
LM's avatar
LM committed
194 195 196
  *
  * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
  * orientations and rotations of objects in three dimensions. Compared to other representations
197
  * like Euler angles or 3x3 matrices, quaternions offer the following advantages:
LM's avatar
LM committed
198 199 200 201 202 203 204 205
  * \li \b compact storage (4 scalars)
  * \li \b efficient to compose (28 flops),
  * \li \b stable spherical interpolation
  *
  * The following two typedefs are provided for convenience:
  * \li \c Quaternionf for \c float
  * \li \c Quaterniond for \c double
  *
206 207
  * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
  *
LM's avatar
LM committed
208 209 210 211 212 213 214 215 216 217 218
  * \sa  class AngleAxis, class Transform
  */

namespace internal {
template<typename _Scalar,int _Options>
struct traits<Quaternion<_Scalar,_Options> >
{
  typedef Quaternion<_Scalar,_Options> PlainObject;
  typedef _Scalar Scalar;
  typedef Matrix<_Scalar,4,1,_Options> Coefficients;
  enum{
Don Gagne's avatar
Don Gagne committed
219
    IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
LM's avatar
LM committed
220 221 222 223 224 225
    Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
  };
};
}

template<typename _Scalar, int _Options>
Don Gagne's avatar
Don Gagne committed
226 227
class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
{
LM's avatar
LM committed
228
  typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
Don Gagne's avatar
Don Gagne committed
229 230
  enum { IsAligned = internal::traits<Quaternion>::IsAligned };

LM's avatar
LM committed
231 232 233
public:
  typedef _Scalar Scalar;

234
  EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
LM's avatar
LM committed
235 236
  using Base::operator*=;

Don Gagne's avatar
Don Gagne committed
237
  typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
LM's avatar
LM committed
238 239 240 241 242 243 244 245 246 247 248 249
  typedef typename Base::AngleAxisType AngleAxisType;

  /** Default constructor leaving the quaternion uninitialized. */
  inline Quaternion() {}

  /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
    * its four coefficients \a w, \a x, \a y and \a z.
    *
    * \warning Note the order of the arguments: the real \a w coefficient first,
    * while internally the coefficients are stored in the following order:
    * [\c x, \c y, \c z, \c w]
    */
Don Gagne's avatar
Don Gagne committed
250
  inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
LM's avatar
LM committed
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

  /** Constructs and initialize a quaternion from the array data */
  inline Quaternion(const Scalar* data) : m_coeffs(data) {}

  /** Copy constructor */
  template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }

  /** Constructs and initializes a quaternion from the angle-axis \a aa */
  explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }

  /** Constructs and initializes a quaternion from either:
    *  - a rotation matrix expression,
    *  - a 4D vector expression representing quaternion coefficients.
    */
  template<typename Derived>
  explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }

Don Gagne's avatar
Don Gagne committed
268 269 270 271 272 273 274 275
  /** Explicit copy constructor with scalar conversion */
  template<typename OtherScalar, int OtherOptions>
  explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
  { m_coeffs = other.coeffs().template cast<Scalar>(); }

  template<typename Derived1, typename Derived2>
  static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);

LM's avatar
LM committed
276 277 278
  inline Coefficients& coeffs() { return m_coeffs;}
  inline const Coefficients& coeffs() const { return m_coeffs;}

Don Gagne's avatar
Don Gagne committed
279 280
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)

LM's avatar
LM committed
281 282 283 284
protected:
  Coefficients m_coeffs;
  
#ifndef EIGEN_PARSED_BY_DOXYGEN
Don Gagne's avatar
Don Gagne committed
285
    static EIGEN_STRONG_INLINE void _check_template_params()
LM's avatar
LM committed
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    {
      EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
        INVALID_MATRIX_TEMPLATE_PARAMETERS)
    }
#endif
};

/** \ingroup Geometry_Module
  * single precision quaternion type */
typedef Quaternion<float> Quaternionf;
/** \ingroup Geometry_Module
  * double precision quaternion type */
typedef Quaternion<double> Quaterniond;

/***************************************************************************
* Specialization of Map<Quaternion<Scalar>>
***************************************************************************/

namespace internal {
  template<typename _Scalar, int _Options>
Don Gagne's avatar
Don Gagne committed
306
  struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
LM's avatar
LM committed
307 308 309 310 311 312 313
  {
    typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
  };
}

namespace internal {
  template<typename _Scalar, int _Options>
Don Gagne's avatar
Don Gagne committed
314
  struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
LM's avatar
LM committed
315 316
  {
    typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
Don Gagne's avatar
Don Gagne committed
317
    typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
LM's avatar
LM committed
318 319 320 321 322 323
    enum {
      Flags = TraitsBase::Flags & ~LvalueBit
    };
  };
}

Don Gagne's avatar
Don Gagne committed
324 325
/** \ingroup Geometry_Module
  * \brief Quaternion expression mapping a constant memory buffer
LM's avatar
LM committed
326
  *
Don Gagne's avatar
Don Gagne committed
327 328
  * \tparam _Scalar the type of the Quaternion coefficients
  * \tparam _Options see class Map
LM's avatar
LM committed
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  *
  * This is a specialization of class Map for Quaternion. This class allows to view
  * a 4 scalar memory buffer as an Eigen's Quaternion object.
  *
  * \sa class Map, class Quaternion, class QuaternionBase
  */
template<typename _Scalar, int _Options>
class Map<const Quaternion<_Scalar>, _Options >
  : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
{
    typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;

  public:
    typedef _Scalar Scalar;
    typedef typename internal::traits<Map>::Coefficients Coefficients;
344
    EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
LM's avatar
LM committed
345 346 347 348
    using Base::operator*=;

    /** Constructs a Mapped Quaternion object from the pointer \a coeffs
      *
349
      * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
LM's avatar
LM committed
350 351 352 353 354 355 356 357 358 359 360
      * \code *coeffs == {x, y, z, w} \endcode
      *
      * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
    EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}

    inline const Coefficients& coeffs() const { return m_coeffs;}

  protected:
    const Coefficients m_coeffs;
};

Don Gagne's avatar
Don Gagne committed
361 362
/** \ingroup Geometry_Module
  * \brief Expression of a quaternion from a memory buffer
LM's avatar
LM committed
363
  *
Don Gagne's avatar
Don Gagne committed
364 365
  * \tparam _Scalar the type of the Quaternion coefficients
  * \tparam _Options see class Map
LM's avatar
LM committed
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
  *
  * This is a specialization of class Map for Quaternion. This class allows to view
  * a 4 scalar memory buffer as an Eigen's  Quaternion object.
  *
  * \sa class Map, class Quaternion, class QuaternionBase
  */
template<typename _Scalar, int _Options>
class Map<Quaternion<_Scalar>, _Options >
  : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
{
    typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;

  public:
    typedef _Scalar Scalar;
    typedef typename internal::traits<Map>::Coefficients Coefficients;
381
    EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
LM's avatar
LM committed
382 383 384 385
    using Base::operator*=;

    /** Constructs a Mapped Quaternion object from the pointer \a coeffs
      *
386
      * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
LM's avatar
LM committed
387 388 389 390 391 392 393 394 395 396 397 398 399
      * \code *coeffs == {x, y, z, w} \endcode
      *
      * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
    EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}

    inline Coefficients& coeffs() { return m_coeffs; }
    inline const Coefficients& coeffs() const { return m_coeffs; }

  protected:
    Coefficients m_coeffs;
};

/** \ingroup Geometry_Module
400
  * Map an unaligned array of single precision scalars as a quaternion */
LM's avatar
LM committed
401 402
typedef Map<Quaternion<float>, 0>         QuaternionMapf;
/** \ingroup Geometry_Module
403
  * Map an unaligned array of double precision scalars as a quaternion */
LM's avatar
LM committed
404 405
typedef Map<Quaternion<double>, 0>        QuaternionMapd;
/** \ingroup Geometry_Module
406
  * Map a 16-byte aligned array of single precision scalars as a quaternion */
LM's avatar
LM committed
407 408
typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf;
/** \ingroup Geometry_Module
409
  * Map a 16-byte aligned array of double precision scalars as a quaternion */
LM's avatar
LM committed
410 411 412 413 414 415 416 417 418 419 420
typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd;

/***************************************************************************
* Implementation of QuaternionBase methods
***************************************************************************/

// Generic Quaternion * Quaternion product
// This product can be specialized for a given architecture via the Arch template argument.
namespace internal {
template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
{
Don Gagne's avatar
Don Gagne committed
421
  static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
LM's avatar
LM committed
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    return Quaternion<Scalar>
    (
      a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
      a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
      a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
      a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
    );
  }
};
}

/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <class Derived>
template <class OtherDerived>
EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
   YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
  return internal::quat_product<Architecture::Target, Derived, OtherDerived,
                         typename internal::traits<Derived>::Scalar,
                         internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
}

/** \sa operator*(Quaternion) */
template <class Derived>
template <class OtherDerived>
EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
{
  derived() = derived() * other.derived();
  return derived();
}

/** Rotation of a vector by a quaternion.
  * \remarks If the quaternion is used to rotate several points (>1)
  * then it is much more efficient to first convert it to a 3x3 Matrix.
  * Comparison of the operation cost for n transformations:
  *   - Quaternion2:    30n
  *   - Via a Matrix3: 24 + 15n
  */
template <class Derived>
EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
464
QuaternionBase<Derived>::_transformVector(const Vector3& v) const
LM's avatar
LM committed
465 466 467 468
{
    // Note that this algorithm comes from the optimization by hand
    // of the conversion to a Matrix followed by a Matrix/Vector product.
    // It appears to be much faster than the common algorithm found
469
    // in the literature (30 versus 39 flops). It also requires two
LM's avatar
LM committed
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    // Vector3 as temporaries.
    Vector3 uv = this->vec().cross(v);
    uv += uv;
    return v + this->w() * uv + this->vec().cross(uv);
}

template<class Derived>
EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
{
  coeffs() = other.coeffs();
  return derived();
}

template<class Derived>
template<class OtherDerived>
EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
{
  coeffs() = other.coeffs();
  return derived();
}

/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
  */
template<class Derived>
EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
{
Don Gagne's avatar
Don Gagne committed
496 497
  using std::cos;
  using std::sin;
LM's avatar
LM committed
498
  Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
Don Gagne's avatar
Don Gagne committed
499 500
  this->w() = cos(ha);
  this->vec() = sin(ha) * aa.axis();
LM's avatar
LM committed
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
  return derived();
}

/** Set \c *this from the expression \a xpr:
  *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
  *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
  *     and \a xpr is converted to a quaternion
  */

template<class Derived>
template<class MatrixDerived>
inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
{
  EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
   YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
  internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
  return derived();
}

/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
  * be normalized, otherwise the result is undefined.
  */
template<class Derived>
inline typename QuaternionBase<Derived>::Matrix3
QuaternionBase<Derived>::toRotationMatrix(void) const
{
  // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
  // if not inlined then the cost of the return by value is huge ~ +35%,
  // however, not inlining this function is an order of magnitude slower, so
  // it has to be inlined, and so the return by value is not an issue
  Matrix3 res;

Don Gagne's avatar
Don Gagne committed
533 534 535
  const Scalar tx  = Scalar(2)*this->x();
  const Scalar ty  = Scalar(2)*this->y();
  const Scalar tz  = Scalar(2)*this->z();
LM's avatar
LM committed
536 537 538 539 540 541 542 543 544 545
  const Scalar twx = tx*this->w();
  const Scalar twy = ty*this->w();
  const Scalar twz = tz*this->w();
  const Scalar txx = tx*this->x();
  const Scalar txy = ty*this->x();
  const Scalar txz = tz*this->x();
  const Scalar tyy = ty*this->y();
  const Scalar tyz = tz*this->y();
  const Scalar tzz = tz*this->z();

Don Gagne's avatar
Don Gagne committed
546
  res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
LM's avatar
LM committed
547 548 549
  res.coeffRef(0,1) = txy-twz;
  res.coeffRef(0,2) = txz+twy;
  res.coeffRef(1,0) = txy+twz;
Don Gagne's avatar
Don Gagne committed
550
  res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
LM's avatar
LM committed
551 552 553
  res.coeffRef(1,2) = tyz-twx;
  res.coeffRef(2,0) = txz-twy;
  res.coeffRef(2,1) = tyz+twx;
Don Gagne's avatar
Don Gagne committed
554
  res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
LM's avatar
LM committed
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

  return res;
}

/** Sets \c *this to be a quaternion representing a rotation between
  * the two arbitrary vectors \a a and \a b. In other words, the built
  * rotation represent a rotation sending the line of direction \a a
  * to the line of direction \a b, both lines passing through the origin.
  *
  * \returns a reference to \c *this.
  *
  * Note that the two input vectors do \b not have to be normalized, and
  * do not need to have the same norm.
  */
template<class Derived>
template<typename Derived1, typename Derived2>
inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
  using std::max;
Don Gagne's avatar
Don Gagne committed
574
  using std::sqrt;
LM's avatar
LM committed
575 576 577 578 579
  Vector3 v0 = a.normalized();
  Vector3 v1 = b.normalized();
  Scalar c = v1.dot(v0);

  // if dot == -1, vectors are nearly opposites
580
  // => accurately compute the rotation axis by computing the
LM's avatar
LM committed
581 582 583 584 585 586 587 588
  //    intersection of the two planes. This is done by solving:
  //       x^T v0 = 0
  //       x^T v1 = 0
  //    under the constraint:
  //       ||x|| = 1
  //    which yields a singular value problem
  if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
  {
589
    c = (max)(c,Scalar(-1));
LM's avatar
LM committed
590 591 592 593 594
    Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
    JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
    Vector3 axis = svd.matrixV().col(2);

    Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
Don Gagne's avatar
Don Gagne committed
595 596
    this->w() = sqrt(w2);
    this->vec() = axis * sqrt(Scalar(1) - w2);
LM's avatar
LM committed
597 598 599
    return derived();
  }
  Vector3 axis = v0.cross(v1);
Don Gagne's avatar
Don Gagne committed
600
  Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
LM's avatar
LM committed
601 602 603 604 605 606 607
  Scalar invs = Scalar(1)/s;
  this->vec() = axis * invs;
  this->w() = s * Scalar(0.5);

  return derived();
}

Don Gagne's avatar
Don Gagne committed
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

/** Returns a quaternion representing a rotation between
  * the two arbitrary vectors \a a and \a b. In other words, the built
  * rotation represent a rotation sending the line of direction \a a
  * to the line of direction \a b, both lines passing through the origin.
  *
  * \returns resulting quaternion
  *
  * Note that the two input vectors do \b not have to be normalized, and
  * do not need to have the same norm.
  */
template<typename Scalar, int Options>
template<typename Derived1, typename Derived2>
Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
    Quaternion quat;
    quat.setFromTwoVectors(a, b);
    return quat;
}


LM's avatar
LM committed
629 630 631 632 633 634 635 636 637 638 639
/** \returns the multiplicative inverse of \c *this
  * Note that in most cases, i.e., if you simply want the opposite rotation,
  * and/or the quaternion is normalized, then it is enough to use the conjugate.
  *
  * \sa QuaternionBase::conjugate()
  */
template <class Derived>
inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
{
  // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
  Scalar n2 = this->squaredNorm();
640
  if (n2 > Scalar(0))
LM's avatar
LM committed
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    return Quaternion<Scalar>(conjugate().coeffs() / n2);
  else
  {
    // return an invalid result to flag the error
    return Quaternion<Scalar>(Coefficients::Zero());
  }
}

/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
  * if the quaternion is normalized.
  * The conjugate of a quaternion represents the opposite rotation.
  *
  * \sa Quaternion2::inverse()
  */
template <class Derived>
inline Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::conjugate() const
{
  return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
}

/** \returns the angle (in radian) between two rotations
  * \sa dot()
  */
template <class Derived>
template <class OtherDerived>
inline typename internal::traits<Derived>::Scalar
QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
{
670
  using std::atan2;
Don Gagne's avatar
Don Gagne committed
671
  using std::abs;
672 673
  Quaternion<Scalar> d = (*this) * other.conjugate();
  return Scalar(2) * atan2( d.vec().norm(), abs(d.w()) );
LM's avatar
LM committed
674 675
}

676 677
 
    
LM's avatar
LM committed
678
/** \returns the spherical linear interpolation between the two quaternions
679 680 681 682
  * \c *this and \a other at the parameter \a t in [0;1].
  * 
  * This represents an interpolation for a constant motion between \c *this and \a other,
  * see also http://en.wikipedia.org/wiki/Slerp.
LM's avatar
LM committed
683 684 685 686
  */
template <class Derived>
template <class OtherDerived>
Quaternion<typename internal::traits<Derived>::Scalar>
Don Gagne's avatar
Don Gagne committed
687
QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
LM's avatar
LM committed
688 689
{
  using std::acos;
Don Gagne's avatar
Don Gagne committed
690 691
  using std::sin;
  using std::abs;
LM's avatar
LM committed
692 693
  static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
  Scalar d = this->dot(other);
Don Gagne's avatar
Don Gagne committed
694
  Scalar absD = abs(d);
LM's avatar
LM committed
695 696 697 698

  Scalar scale0;
  Scalar scale1;

Don Gagne's avatar
Don Gagne committed
699
  if(absD>=one)
LM's avatar
LM committed
700 701 702 703 704 705 706 707
  {
    scale0 = Scalar(1) - t;
    scale1 = t;
  }
  else
  {
    // theta is the angle between the 2 quaternions
    Scalar theta = acos(absD);
Don Gagne's avatar
Don Gagne committed
708
    Scalar sinTheta = sin(theta);
LM's avatar
LM committed
709

Don Gagne's avatar
Don Gagne committed
710 711
    scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
    scale1 = sin( ( t * theta) ) / sinTheta;
LM's avatar
LM committed
712
  }
713
  if(d<Scalar(0)) scale1 = -scale1;
LM's avatar
LM committed
714 715 716 717 718 719 720 721 722 723 724 725

  return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
}

namespace internal {

// set from a rotation matrix
template<typename Other>
struct quaternionbase_assign_impl<Other,3,3>
{
  typedef typename Other::Scalar Scalar;
  typedef DenseIndex Index;
Don Gagne's avatar
Don Gagne committed
726
  template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
LM's avatar
LM committed
727
  {
Don Gagne's avatar
Don Gagne committed
728
    using std::sqrt;
LM's avatar
LM committed
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
    // This algorithm comes from  "Quaternion Calculus and Fast Animation",
    // Ken Shoemake, 1987 SIGGRAPH course notes
    Scalar t = mat.trace();
    if (t > Scalar(0))
    {
      t = sqrt(t + Scalar(1.0));
      q.w() = Scalar(0.5)*t;
      t = Scalar(0.5)/t;
      q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
      q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
      q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
    }
    else
    {
      DenseIndex i = 0;
      if (mat.coeff(1,1) > mat.coeff(0,0))
        i = 1;
      if (mat.coeff(2,2) > mat.coeff(i,i))
        i = 2;
      DenseIndex j = (i+1)%3;
      DenseIndex k = (j+1)%3;

      t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
      q.coeffs().coeffRef(i) = Scalar(0.5) * t;
      t = Scalar(0.5)/t;
      q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
      q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
      q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
    }
  }
};

// set from a vector of coefficients assumed to be a quaternion
template<typename Other>
struct quaternionbase_assign_impl<Other,4,1>
{
  typedef typename Other::Scalar Scalar;
Don Gagne's avatar
Don Gagne committed
766
  template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
LM's avatar
LM committed
767 768 769 770 771 772 773
  {
    q.coeffs() = vec;
  }
};

} // end namespace internal

Don Gagne's avatar
Don Gagne committed
774 775
} // end namespace Eigen

LM's avatar
LM committed
776
#endif // EIGEN_QUATERNION_H