AngleAxis.h 7.44 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_ANGLEAXIS_H
#define EIGEN_ANGLEAXIS_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen { 

LM's avatar
LM committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/** \geometry_module \ingroup Geometry_Module
  *
  * \class AngleAxis
  *
  * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients.
  *
  * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized.
  *
  * The following two typedefs are provided for convenience:
  * \li \c AngleAxisf for \c float
  * \li \c AngleAxisd for \c double
  *
  * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
  * mimic Euler-angles. Here is an example:
  * \include AngleAxis_mimic_euler.cpp
  * Output: \verbinclude AngleAxis_mimic_euler.out
  *
  * \note This class is not aimed to be used to store a rotation transformation,
  * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
  * and transformation objects.
  *
  * \sa class Quaternion, class Transform, MatrixBase::UnitX()
  */

namespace internal {
template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
{
  typedef _Scalar Scalar;
};
}

template<typename _Scalar>
class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
{
  typedef RotationBase<AngleAxis<_Scalar>,3> Base;

public:

  using Base::operator*;

  enum { Dim = 3 };
  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;
  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Quaternion<Scalar> QuaternionType;

protected:

  Vector3 m_axis;
  Scalar m_angle;

public:

  /** Default constructor without initialization. */
  AngleAxis() {}
  /** Constructs and initialize the angle-axis rotation from an \a angle in radian
    * and an \a axis which \b must \b be \b normalized.
    *
    * \warning If the \a axis vector is not normalized, then the angle-axis object
    *          represents an invalid rotation. */
  template<typename Derived>
Don Gagne's avatar
Don Gagne committed
79
  inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
LM's avatar
LM committed
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
  template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
  /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
  template<typename Derived>
  inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }

  Scalar angle() const { return m_angle; }
  Scalar& angle() { return m_angle; }

  const Vector3& axis() const { return m_axis; }
  Vector3& axis() { return m_axis; }

  /** Concatenates two rotations */
  inline QuaternionType operator* (const AngleAxis& other) const
  { return QuaternionType(*this) * QuaternionType(other); }

  /** Concatenates two rotations */
  inline QuaternionType operator* (const QuaternionType& other) const
  { return QuaternionType(*this) * other; }

  /** Concatenates two rotations */
  friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
  { return a * QuaternionType(b); }

  /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
  AngleAxis inverse() const
  { return AngleAxis(-m_angle, m_axis); }

  template<class QuatDerived>
  AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
  template<typename Derived>
  AngleAxis& operator=(const MatrixBase<Derived>& m);

  template<typename Derived>
  AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
  Matrix3 toRotationMatrix(void) const;

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
  { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
  {
    m_axis = other.axis().template cast<Scalar>();
    m_angle = Scalar(other.angle());
  }

134
  static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); }
LM's avatar
LM committed
135 136 137 138 139

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
Don Gagne's avatar
Don Gagne committed
140
  bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
LM's avatar
LM committed
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
};

/** \ingroup Geometry_Module
  * single precision angle-axis type */
typedef AngleAxis<float> AngleAxisf;
/** \ingroup Geometry_Module
  * double precision angle-axis type */
typedef AngleAxis<double> AngleAxisd;

/** Set \c *this from a \b unit quaternion.
  * The axis is normalized.
  * 
  * \warning As any other method dealing with quaternion, if the input quaternion
  *          is not normalized then the result is undefined.
  */
template<typename Scalar>
template<typename QuatDerived>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
{
  using std::acos;
  using std::min;
  using std::max;
Don Gagne's avatar
Don Gagne committed
164
  using std::sqrt;
LM's avatar
LM committed
165 166 167
  Scalar n2 = q.vec().squaredNorm();
  if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
  {
168 169
    m_angle = Scalar(0);
    m_axis << Scalar(1), Scalar(0), Scalar(0);
LM's avatar
LM committed
170 171 172
  }
  else
  {
Don Gagne's avatar
Don Gagne committed
173 174
    m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
    m_axis = q.vec() / sqrt(n2);
LM's avatar
LM committed
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  }
  return *this;
}

/** Set \c *this from a 3x3 rotation matrix \a mat.
  */
template<typename Scalar>
template<typename Derived>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
{
  // Since a direct conversion would not be really faster,
  // let's use the robust Quaternion implementation:
  return *this = QuaternionType(mat);
}

/**
* \brief Sets \c *this from a 3x3 rotation matrix.
**/
template<typename Scalar>
template<typename Derived>
AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
{
  return *this = QuaternionType(mat);
}

/** Constructs and \returns an equivalent 3x3 rotation matrix.
  */
template<typename Scalar>
typename AngleAxis<Scalar>::Matrix3
AngleAxis<Scalar>::toRotationMatrix(void) const
{
Don Gagne's avatar
Don Gagne committed
206 207
  using std::sin;
  using std::cos;
LM's avatar
LM committed
208
  Matrix3 res;
Don Gagne's avatar
Don Gagne committed
209 210
  Vector3 sin_axis  = sin(m_angle) * m_axis;
  Scalar c = cos(m_angle);
LM's avatar
LM committed
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  Vector3 cos1_axis = (Scalar(1)-c) * m_axis;

  Scalar tmp;
  tmp = cos1_axis.x() * m_axis.y();
  res.coeffRef(0,1) = tmp - sin_axis.z();
  res.coeffRef(1,0) = tmp + sin_axis.z();

  tmp = cos1_axis.x() * m_axis.z();
  res.coeffRef(0,2) = tmp + sin_axis.y();
  res.coeffRef(2,0) = tmp - sin_axis.y();

  tmp = cos1_axis.y() * m_axis.z();
  res.coeffRef(1,2) = tmp - sin_axis.x();
  res.coeffRef(2,1) = tmp + sin_axis.x();

  res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;

  return res;
}

Don Gagne's avatar
Don Gagne committed
231 232
} // end namespace Eigen

LM's avatar
LM committed
233
#endif // EIGEN_ANGLEAXIS_H