RealQZ.h 22 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_REAL_QZ_H
#define EIGEN_REAL_QZ_H

namespace Eigen {

  /** \eigenvalues_module \ingroup Eigenvalues_Module
   *
   *
   * \class RealQZ
   *
   * \brief Performs a real QZ decomposition of a pair of square matrices
   *
   * \tparam _MatrixType the type of the matrix of which we are computing the
   * real QZ decomposition; this is expected to be an instantiation of the
   * Matrix class template.
   *
   * Given a real square matrices A and B, this class computes the real QZ
   * decomposition: \f$ A = Q S Z \f$, \f$ B = Q T Z \f$ where Q and Z are
   * real orthogonal matrixes, T is upper-triangular matrix, and S is upper
   * quasi-triangular matrix. An orthogonal matrix is a matrix whose
   * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
   * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
   * blocks and 2-by-2 blocks where further reduction is impossible due to
   * complex eigenvalues. 
   *
   * The eigenvalues of the pencil \f$ A - z B \f$ can be obtained from
   * 1x1 and 2x2 blocks on the diagonals of S and T.
   *
   * Call the function compute() to compute the real QZ decomposition of a
   * given pair of matrices. Alternatively, you can use the 
   * RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ)
   * constructor which computes the real QZ decomposition at construction
   * time. Once the decomposition is computed, you can use the matrixS(),
   * matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices
   * S, T, Q and Z in the decomposition. If computeQZ==false, some time
   * is saved by not computing matrices Q and Z.
   *
   * Example: \include RealQZ_compute.cpp
   * Output: \include RealQZ_compute.out
   *
   * \note The implementation is based on the algorithm in "Matrix Computations"
   * by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for
   * generalized eigenvalue problems" by C.B.Moler and G.W.Stewart.
   *
   * \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
   */

  template<typename _MatrixType> class RealQZ
  {
    public:
      typedef _MatrixType MatrixType;
      enum {
        RowsAtCompileTime = MatrixType::RowsAtCompileTime,
        ColsAtCompileTime = MatrixType::ColsAtCompileTime,
        Options = MatrixType::Options,
        MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
        MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
      };
      typedef typename MatrixType::Scalar Scalar;
      typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
      typedef typename MatrixType::Index Index;

      typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
      typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;

      /** \brief Default constructor.
       *
       * \param [in] size  Positive integer, size of the matrix whose QZ decomposition will be computed.
       *
       * The default constructor is useful in cases in which the user intends to
       * perform decompositions via compute().  The \p size parameter is only
       * used as a hint. It is not an error to give a wrong \p size, but it may
       * impair performance.
       *
       * \sa compute() for an example.
       */
      RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) : 
        m_S(size, size),
        m_T(size, size),
        m_Q(size, size),
        m_Z(size, size),
        m_workspace(size*2),
        m_maxIters(400),
        m_isInitialized(false)
        { }

      /** \brief Constructor; computes real QZ decomposition of given matrices
       * 
       * \param[in]  A          Matrix A.
       * \param[in]  B          Matrix B.
       * \param[in]  computeQZ  If false, A and Z are not computed.
       *
       * This constructor calls compute() to compute the QZ decomposition.
       */
      RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) :
        m_S(A.rows(),A.cols()),
        m_T(A.rows(),A.cols()),
        m_Q(A.rows(),A.cols()),
        m_Z(A.rows(),A.cols()),
        m_workspace(A.rows()*2),
        m_maxIters(400),
        m_isInitialized(false) {
          compute(A, B, computeQZ);
        }

      /** \brief Returns matrix Q in the QZ decomposition. 
       *
       * \returns A const reference to the matrix Q.
       */
      const MatrixType& matrixQ() const {
        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
        eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
        return m_Q;
      }

      /** \brief Returns matrix Z in the QZ decomposition. 
       *
       * \returns A const reference to the matrix Z.
       */
      const MatrixType& matrixZ() const {
        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
        eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
        return m_Z;
      }

      /** \brief Returns matrix S in the QZ decomposition. 
       *
       * \returns A const reference to the matrix S.
       */
      const MatrixType& matrixS() const {
        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
        return m_S;
      }

      /** \brief Returns matrix S in the QZ decomposition. 
       *
       * \returns A const reference to the matrix S.
       */
      const MatrixType& matrixT() const {
        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
        return m_T;
      }

      /** \brief Computes QZ decomposition of given matrix. 
       * 
       * \param[in]  A          Matrix A.
       * \param[in]  B          Matrix B.
       * \param[in]  computeQZ  If false, A and Z are not computed.
       * \returns    Reference to \c *this
       */
      RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true);

      /** \brief Reports whether previous computation was successful.
       *
       * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
       */
      ComputationInfo info() const
      {
        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
        return m_info;
      }

      /** \brief Returns number of performed QR-like iterations.
      */
      Index iterations() const
      {
        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
        return m_global_iter;
      }

      /** Sets the maximal number of iterations allowed to converge to one eigenvalue
       * or decouple the problem.
      */
      RealQZ& setMaxIterations(Index maxIters)
      {
        m_maxIters = maxIters;
        return *this;
      }

    private:

      MatrixType m_S, m_T, m_Q, m_Z;
      Matrix<Scalar,Dynamic,1> m_workspace;
      ComputationInfo m_info;
      Index m_maxIters;
      bool m_isInitialized;
      bool m_computeQZ;
      Scalar m_normOfT, m_normOfS;
      Index m_global_iter;

      typedef Matrix<Scalar,3,1> Vector3s;
      typedef Matrix<Scalar,2,1> Vector2s;
      typedef Matrix<Scalar,2,2> Matrix2s;
      typedef JacobiRotation<Scalar> JRs;

      void hessenbergTriangular();
      void computeNorms();
      Index findSmallSubdiagEntry(Index iu);
      Index findSmallDiagEntry(Index f, Index l);
      void splitOffTwoRows(Index i);
      void pushDownZero(Index z, Index f, Index l);
      void step(Index f, Index l, Index iter);

  }; // RealQZ

  /** \internal Reduces S and T to upper Hessenberg - triangular form */
  template<typename MatrixType>
    void RealQZ<MatrixType>::hessenbergTriangular()
    {

      const Index dim = m_S.cols();

      // perform QR decomposition of T, overwrite T with R, save Q
      HouseholderQR<MatrixType> qrT(m_T);
      m_T = qrT.matrixQR();
      m_T.template triangularView<StrictlyLower>().setZero();
      m_Q = qrT.householderQ();
      // overwrite S with Q* S
      m_S.applyOnTheLeft(m_Q.adjoint());
      // init Z as Identity
      if (m_computeQZ)
        m_Z = MatrixType::Identity(dim,dim);
      // reduce S to upper Hessenberg with Givens rotations
      for (Index j=0; j<=dim-3; j++) {
        for (Index i=dim-1; i>=j+2; i--) {
          JRs G;
          // kill S(i,j)
          if(m_S.coeff(i,j) != 0)
          {
            G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
            m_S.coeffRef(i,j) = Scalar(0.0);
            m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
            m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
243 244 245
            // update Q
            if (m_computeQZ)
              m_Q.applyOnTheRight(i-1,i,G);
Don Gagne's avatar
Don Gagne committed
246 247 248 249 250 251 252 253
          }
          // kill T(i,i-1)
          if(m_T.coeff(i,i-1)!=Scalar(0))
          {
            G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
            m_T.coeffRef(i,i-1) = Scalar(0.0);
            m_S.applyOnTheRight(i,i-1,G);
            m_T.topRows(i).applyOnTheRight(i,i-1,G);
254 255 256
            // update Z
            if (m_computeQZ)
              m_Z.applyOnTheLeft(i,i-1,G.adjoint());
Don Gagne's avatar
Don Gagne committed
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
          }
        }
      }
    }

  /** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
  template<typename MatrixType>
    inline void RealQZ<MatrixType>::computeNorms()
    {
      const Index size = m_S.cols();
      m_normOfS = Scalar(0.0);
      m_normOfT = Scalar(0.0);
      for (Index j = 0; j < size; ++j)
      {
        m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
        m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
      }
    }


  /** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
  template<typename MatrixType>
    inline typename MatrixType::Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu)
    {
      using std::abs;
      Index res = iu;
      while (res > 0)
      {
        Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res));
        if (s == Scalar(0.0))
          s = m_normOfS;
        if (abs(m_S.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
          break;
        res--;
      }
      return res;
    }

  /** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1)  */
  template<typename MatrixType>
    inline typename MatrixType::Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l)
    {
      using std::abs;
      Index res = l;
      while (res >= f) {
        if (abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
          break;
        res--;
      }
      return res;
    }

  /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */
  template<typename MatrixType>
    inline void RealQZ<MatrixType>::splitOffTwoRows(Index i)
    {
      using std::abs;
      using std::sqrt;
      const Index dim=m_S.cols();
316
      if (abs(m_S.coeff(i+1,i))==Scalar(0))
Don Gagne's avatar
Don Gagne committed
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
        return;
      Index z = findSmallDiagEntry(i,i+1);
      if (z==i-1)
      {
        // block of (S T^{-1})
        Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
          template solve<OnTheRight>(m_S.template block<2,2>(i,i));
        Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1));
        Scalar q = p*p + STi(1,0)*STi(0,1);
        if (q>=0) {
          Scalar z = sqrt(q);
          // one QR-like iteration for ABi - lambda I
          // is enough - when we know exact eigenvalue in advance,
          // convergence is immediate
          JRs G;
          if (p>=0)
            G.makeGivens(p + z, STi(1,0));
          else
            G.makeGivens(p - z, STi(1,0));
          m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
          m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
          // update Q
          if (m_computeQZ)
            m_Q.applyOnTheRight(i,i+1,G);

          G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i));
          m_S.topRows(i+2).applyOnTheRight(i+1,i,G);
          m_T.topRows(i+2).applyOnTheRight(i+1,i,G);
          // update Z
          if (m_computeQZ)
            m_Z.applyOnTheLeft(i+1,i,G.adjoint());

          m_S.coeffRef(i+1,i) = Scalar(0.0);
          m_T.coeffRef(i+1,i) = Scalar(0.0);
        }
      }
      else
      {
        pushDownZero(z,i,i+1);
      }
    }

  /** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */
  template<typename MatrixType>
    inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l)
    {
      JRs G;
      const Index dim = m_S.cols();
      for (Index zz=z; zz<l; zz++)
      {
        // push 0 down
        Index firstColS = zz>f ? (zz-1) : zz;
        G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
        m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint());
        m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint());
        m_T.coeffRef(zz+1,zz+1) = Scalar(0.0);
        // update Q
        if (m_computeQZ)
          m_Q.applyOnTheRight(zz,zz+1,G);
        // kill S(zz+1, zz-1)
        if (zz>f)
        {
          G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
          m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
          m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
          m_S.coeffRef(zz+1,zz-1) = Scalar(0.0);
          // update Z
          if (m_computeQZ)
            m_Z.applyOnTheLeft(zz,zz-1,G.adjoint());
        }
      }
      // finally kill S(l,l-1)
      G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1));
      m_S.applyOnTheRight(l,l-1,G);
      m_T.applyOnTheRight(l,l-1,G);
      m_S.coeffRef(l,l-1)=Scalar(0.0);
      // update Z
      if (m_computeQZ)
        m_Z.applyOnTheLeft(l,l-1,G.adjoint());
    }

  /** \internal QR-like iterative step for block f..l */
  template<typename MatrixType>
    inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter)
    {
      using std::abs;
      const Index dim = m_S.cols();

      // x, y, z
      Scalar x, y, z;
      if (iter==10)
      {
        // Wilkinson ad hoc shift
        const Scalar
          a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
          a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1),
          b12=m_T.coeff(f+0,f+1),
          b11i=Scalar(1.0)/m_T.coeff(f+0,f+0),
          b22i=Scalar(1.0)/m_T.coeff(f+1,f+1),
          a87=m_S.coeff(l-1,l-2),
          a98=m_S.coeff(l-0,l-1),
          b77i=Scalar(1.0)/m_T.coeff(l-2,l-2),
          b88i=Scalar(1.0)/m_T.coeff(l-1,l-1);
        Scalar ss = abs(a87*b77i) + abs(a98*b88i),
               lpl = Scalar(1.5)*ss,
               ll = ss*ss;
        x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i
          - a11*a21*b12*b11i*b11i*b22i;
        y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i 
          - a21*a21*b12*b11i*b11i*b22i;
        z = a21*a32*b11i*b22i;
      }
      else if (iter==16)
      {
        // another exceptional shift
        x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
          (m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
        y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
        z = 0;
      }
      else if (iter>23 && !(iter%8))
      {
        // extremely exceptional shift
        x = internal::random<Scalar>(-1.0,1.0);
        y = internal::random<Scalar>(-1.0,1.0);
        z = internal::random<Scalar>(-1.0,1.0);
      }
      else
      {
        // Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1
        // where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where
        // U and V are 2x2 bottom right sub matrices of A and B. Thus:
        //  = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1)
        //  = AB^-1AB^-1 + det(M) - tr(M)(AB^-1)
        // Since we are only interested in having x, y, z with a correct ratio, we have:
        const Scalar
          a11 = m_S.coeff(f,f),     a12 = m_S.coeff(f,f+1),
          a21 = m_S.coeff(f+1,f),   a22 = m_S.coeff(f+1,f+1),
                                    a32 = m_S.coeff(f+2,f+1),

          a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
          a98 = m_S.coeff(l,l-1),   a99 = m_S.coeff(l,l),

          b11 = m_T.coeff(f,f),     b12 = m_T.coeff(f,f+1),
                                    b22 = m_T.coeff(f+1,f+1),

          b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
                                    b99 = m_T.coeff(l,l);

        x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
          + a12/b22 - (a11/b11)*(b12/b22);
        y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
        z = a32/b22;
      }

      JRs G;

      for (Index k=f; k<=l-2; k++)
      {
        // variables for Householder reflections
        Vector2s essential2;
        Scalar tau, beta;

        Vector3s hr(x,y,z);

        // Q_k to annihilate S(k+1,k-1) and S(k+2,k-1)
        hr.makeHouseholderInPlace(tau, beta);
        essential2 = hr.template bottomRows<2>();
        Index fc=(std::max)(k-1,Index(0));  // first col to update
        m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
        m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
        if (m_computeQZ)
          m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
        if (k>f)
          m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0);

        // Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k)
        hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
        hr.makeHouseholderInPlace(tau, beta);
        essential2 = hr.template bottomRows<2>();
        {
          Index lr = (std::min)(k+4,dim); // last row to update
          Map<Matrix<Scalar,Dynamic,1> > tmp(m_workspace.data(),lr);
          // S
          tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
          tmp += m_S.col(k+2).head(lr);
          m_S.col(k+2).head(lr) -= tau*tmp;
          m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
          // T
          tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
          tmp += m_T.col(k+2).head(lr);
          m_T.col(k+2).head(lr) -= tau*tmp;
          m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
        }
        if (m_computeQZ)
        {
          // Z
          Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
          tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
          tmp += m_Z.row(k+2);
          m_Z.row(k+2) -= tau*tmp;
          m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
        }
        m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0);

        // Z_{k2} to annihilate T(k+1,k)
        G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
        m_S.applyOnTheRight(k+1,k,G);
        m_T.applyOnTheRight(k+1,k,G);
        // update Z
        if (m_computeQZ)
          m_Z.applyOnTheLeft(k+1,k,G.adjoint());
        m_T.coeffRef(k+1,k) = Scalar(0.0);

        // update x,y,z
        x = m_S.coeff(k+1,k);
        y = m_S.coeff(k+2,k);
        if (k < l-2)
          z = m_S.coeff(k+3,k);
      } // loop over k

      // Q_{n-1} to annihilate y = S(l,l-2)
      G.makeGivens(x,y);
      m_S.applyOnTheLeft(l-1,l,G.adjoint());
      m_T.applyOnTheLeft(l-1,l,G.adjoint());
      if (m_computeQZ)
        m_Q.applyOnTheRight(l-1,l,G);
      m_S.coeffRef(l,l-2) = Scalar(0.0);

      // Z_{n-1} to annihilate T(l,l-1)
      G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
      m_S.applyOnTheRight(l,l-1,G);
      m_T.applyOnTheRight(l,l-1,G);
      if (m_computeQZ)
        m_Z.applyOnTheLeft(l,l-1,G.adjoint());
      m_T.coeffRef(l,l-1) = Scalar(0.0);
    }


  template<typename MatrixType>
    RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
    {

      const Index dim = A_in.cols();

      eigen_assert (A_in.rows()==dim && A_in.cols()==dim 
          && B_in.rows()==dim && B_in.cols()==dim 
          && "Need square matrices of the same dimension");

      m_isInitialized = true;
      m_computeQZ = computeQZ;
      m_S = A_in; m_T = B_in;
      m_workspace.resize(dim*2);
      m_global_iter = 0;

      // entrance point: hessenberg triangular decomposition
      hessenbergTriangular();
      // compute L1 vector norms of T, S into m_normOfS, m_normOfT
      computeNorms();

      Index l = dim-1, 
            f, 
            local_iter = 0;

      while (l>0 && local_iter<m_maxIters)
      {
        f = findSmallSubdiagEntry(l);
        // now rows and columns f..l (including) decouple from the rest of the problem
        if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
        if (f == l) // One root found
        {
          l--;
          local_iter = 0;
        }
        else if (f == l-1) // Two roots found
        {
          splitOffTwoRows(f);
          l -= 2;
          local_iter = 0;
        }
        else // No convergence yet
        {
          // if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations
          Index z = findSmallDiagEntry(f,l);
          if (z>=f)
          {
            // zero found
            pushDownZero(z,f,l);
          }
          else
          {
            // We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg 
            // and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to
            // apply a QR-like iteration to rows and columns f..l.
            step(f,l, local_iter);
            local_iter++;
            m_global_iter++;
          }
        }
      }
      // check if we converged before reaching iterations limit
      m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
      return *this;
    } // end compute

} // end namespace Eigen

#endif //EIGEN_REAL_QZ