DenseBase.h 22.2 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12 13

#ifndef EIGEN_DENSEBASE_H
#define EIGEN_DENSEBASE_H

Don Gagne's avatar
Don Gagne committed
14 15 16 17 18 19 20 21 22 23 24 25
namespace Eigen {

namespace internal {
  
// The index type defined by EIGEN_DEFAULT_DENSE_INDEX_TYPE must be a signed type.
// This dummy function simply aims at checking that at compile time.
static inline void check_DenseIndex_is_signed() {
  EIGEN_STATIC_ASSERT(NumTraits<DenseIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); 
}

} // end namespace internal
  
LM's avatar
LM committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/** \class DenseBase
  * \ingroup Core_Module
  *
  * \brief Base class for all dense matrices, vectors, and arrays
  *
  * This class is the base that is inherited by all dense objects (matrix, vector, arrays,
  * and related expression types). The common Eigen API for dense objects is contained in this class.
  *
  * \tparam Derived is the derived type, e.g., a matrix type or an expression.
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN.
  *
  * \sa \ref TopicClassHierarchy
  */
template<typename Derived> class DenseBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
43 44 45
  : public internal::special_scalar_op_base<Derived, typename internal::traits<Derived>::Scalar,
                                            typename NumTraits<typename internal::traits<Derived>::Scalar>::Real,
                                            DenseCoeffsBase<Derived> >
LM's avatar
LM committed
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#else
  : public DenseCoeffsBase<Derived>
#endif // not EIGEN_PARSED_BY_DOXYGEN
{
  public:

    class InnerIterator;

    typedef typename internal::traits<Derived>::StorageKind StorageKind;

    /** \brief The type of indices 
      * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
      * \sa \ref TopicPreprocessorDirectives.
      */
    typedef typename internal::traits<Derived>::Index Index; 

    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
65
    typedef internal::special_scalar_op_base<Derived,Scalar,RealScalar, DenseCoeffsBase<Derived> > Base;
LM's avatar
LM committed
66

67
    using Base::operator*;
LM's avatar
LM committed
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    using Base::derived;
    using Base::const_cast_derived;
    using Base::rows;
    using Base::cols;
    using Base::size;
    using Base::rowIndexByOuterInner;
    using Base::colIndexByOuterInner;
    using Base::coeff;
    using Base::coeffByOuterInner;
    using Base::packet;
    using Base::packetByOuterInner;
    using Base::writePacket;
    using Base::writePacketByOuterInner;
    using Base::coeffRef;
    using Base::coeffRefByOuterInner;
    using Base::copyCoeff;
    using Base::copyCoeffByOuterInner;
    using Base::copyPacket;
    using Base::copyPacketByOuterInner;
    using Base::operator();
    using Base::operator[];
    using Base::x;
    using Base::y;
    using Base::z;
    using Base::w;
    using Base::stride;
    using Base::innerStride;
    using Base::outerStride;
    using Base::rowStride;
    using Base::colStride;
    typedef typename Base::CoeffReturnType CoeffReturnType;

    enum {

      RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
        /**< The number of rows at compile-time. This is just a copy of the value provided
          * by the \a Derived type. If a value is not known at compile-time,
          * it is set to the \a Dynamic constant.
          * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */

      ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
        /**< The number of columns at compile-time. This is just a copy of the value provided
          * by the \a Derived type. If a value is not known at compile-time,
          * it is set to the \a Dynamic constant.
          * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */


      SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
                                                   internal::traits<Derived>::ColsAtCompileTime>::ret),
        /**< This is equal to the number of coefficients, i.e. the number of
          * rows times the number of columns, or to \a Dynamic if this is not
          * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */

      MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
        /**< This value is equal to the maximum possible number of rows that this expression
          * might have. If this expression might have an arbitrarily high number of rows,
          * this value is set to \a Dynamic.
          *
          * This value is useful to know when evaluating an expression, in order to determine
          * whether it is possible to avoid doing a dynamic memory allocation.
          *
          * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
          */

      MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
        /**< This value is equal to the maximum possible number of columns that this expression
          * might have. If this expression might have an arbitrarily high number of columns,
          * this value is set to \a Dynamic.
          *
          * This value is useful to know when evaluating an expression, in order to determine
          * whether it is possible to avoid doing a dynamic memory allocation.
          *
          * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
          */

      MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
                                                      internal::traits<Derived>::MaxColsAtCompileTime>::ret),
        /**< This value is equal to the maximum possible number of coefficients that this expression
          * might have. If this expression might have an arbitrarily high number of coefficients,
          * this value is set to \a Dynamic.
          *
          * This value is useful to know when evaluating an expression, in order to determine
          * whether it is possible to avoid doing a dynamic memory allocation.
          *
          * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
          */

      IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1
                           || internal::traits<Derived>::MaxColsAtCompileTime == 1,
        /**< This is set to true if either the number of rows or the number of
          * columns is known at compile-time to be equal to 1. Indeed, in that case,
          * we are dealing with a column-vector (if there is only one column) or with
          * a row-vector (if there is only one row). */

      Flags = internal::traits<Derived>::Flags,
        /**< This stores expression \ref flags flags which may or may not be inherited by new expressions
          * constructed from this one. See the \ref flags "list of flags".
          */

      IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */

Don Gagne's avatar
Don Gagne committed
169 170
      InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
                             : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
LM's avatar
LM committed
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

      CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
        /**< This is a rough measure of how expensive it is to read one coefficient from
          * this expression.
          */

      InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
      OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
    };

    enum { ThisConstantIsPrivateInPlainObjectBase };

    /** \returns the number of nonzero coefficients which is in practice the number
      * of stored coefficients. */
    inline Index nonZeros() const { return size(); }

    /** \returns the outer size.
      *
      * \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension
      * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a
      * column-major matrix, and the number of rows for a row-major matrix. */
    Index outerSize() const
    {
      return IsVectorAtCompileTime ? 1
           : int(IsRowMajor) ? this->rows() : this->cols();
    }

    /** \returns the inner size.
      *
      * \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension
      * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a 
      * column-major matrix, and the number of columns for a row-major matrix. */
    Index innerSize() const
    {
      return IsVectorAtCompileTime ? this->size()
           : int(IsRowMajor) ? this->cols() : this->rows();
    }

    /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
      * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
      * nothing else.
      */
Don Gagne's avatar
Don Gagne committed
213
    void resize(Index newSize)
LM's avatar
LM committed
214
    {
Don Gagne's avatar
Don Gagne committed
215 216
      EIGEN_ONLY_USED_FOR_DEBUG(newSize);
      eigen_assert(newSize == this->size()
LM's avatar
LM committed
217 218 219 220 221 222
                && "DenseBase::resize() does not actually allow to resize.");
    }
    /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
      * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
      * nothing else.
      */
Don Gagne's avatar
Don Gagne committed
223
    void resize(Index nbRows, Index nbCols)
LM's avatar
LM committed
224
    {
Don Gagne's avatar
Don Gagne committed
225 226 227
      EIGEN_ONLY_USED_FOR_DEBUG(nbRows);
      EIGEN_ONLY_USED_FOR_DEBUG(nbCols);
      eigen_assert(nbRows == this->rows() && nbCols == this->cols()
LM's avatar
LM committed
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
                && "DenseBase::resize() does not actually allow to resize.");
    }

#ifndef EIGEN_PARSED_BY_DOXYGEN

    /** \internal Represents a matrix with all coefficients equal to one another*/
    typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
    /** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */
    typedef CwiseNullaryOp<internal::linspaced_op<Scalar,false>,Derived> SequentialLinSpacedReturnType;
    /** \internal Represents a vector with linearly spaced coefficients that allows random access. */
    typedef CwiseNullaryOp<internal::linspaced_op<Scalar,true>,Derived> RandomAccessLinSpacedReturnType;
    /** \internal the return type of MatrixBase::eigenvalues() */
    typedef Matrix<typename NumTraits<typename internal::traits<Derived>::Scalar>::Real, internal::traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;

#endif // not EIGEN_PARSED_BY_DOXYGEN

    /** Copies \a other into *this. \returns a reference to *this. */
    template<typename OtherDerived>
    Derived& operator=(const DenseBase<OtherDerived>& other);

    /** Special case of the template operator=, in order to prevent the compiler
      * from generating a default operator= (issue hit with g++ 4.1)
      */
    Derived& operator=(const DenseBase& other);

    template<typename OtherDerived>
    Derived& operator=(const EigenBase<OtherDerived> &other);

    template<typename OtherDerived>
    Derived& operator+=(const EigenBase<OtherDerived> &other);

    template<typename OtherDerived>
    Derived& operator-=(const EigenBase<OtherDerived> &other);

    template<typename OtherDerived>
    Derived& operator=(const ReturnByValue<OtherDerived>& func);

265
    /** \internal Copies \a other into *this without evaluating other. \returns a reference to *this. */
LM's avatar
LM committed
266 267
    template<typename OtherDerived>
    Derived& lazyAssign(const DenseBase<OtherDerived>& other);
268 269 270 271

    /** \internal Evaluates \a other into *this. \returns a reference to *this. */
    template<typename OtherDerived>
    Derived& lazyAssign(const ReturnByValue<OtherDerived>& other);
LM's avatar
LM committed
272 273 274 275 276 277 278 279 280 281

    CommaInitializer<Derived> operator<< (const Scalar& s);

    template<unsigned int Added,unsigned int Removed>
    const Flagged<Derived, Added, Removed> flagged() const;

    template<typename OtherDerived>
    CommaInitializer<Derived> operator<< (const DenseBase<OtherDerived>& other);

    Eigen::Transpose<Derived> transpose();
Don Gagne's avatar
Don Gagne committed
282
	typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType;
LM's avatar
LM committed
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    ConstTransposeReturnType transpose() const;
    void transposeInPlace();
#ifndef EIGEN_NO_DEBUG
  protected:
    template<typename OtherDerived>
    void checkTransposeAliasing(const OtherDerived& other) const;
  public:
#endif


    static const ConstantReturnType
    Constant(Index rows, Index cols, const Scalar& value);
    static const ConstantReturnType
    Constant(Index size, const Scalar& value);
    static const ConstantReturnType
    Constant(const Scalar& value);

    static const SequentialLinSpacedReturnType
    LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high);
    static const RandomAccessLinSpacedReturnType
    LinSpaced(Index size, const Scalar& low, const Scalar& high);
    static const SequentialLinSpacedReturnType
    LinSpaced(Sequential_t, const Scalar& low, const Scalar& high);
    static const RandomAccessLinSpacedReturnType
    LinSpaced(const Scalar& low, const Scalar& high);

    template<typename CustomNullaryOp>
    static const CwiseNullaryOp<CustomNullaryOp, Derived>
    NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func);
    template<typename CustomNullaryOp>
    static const CwiseNullaryOp<CustomNullaryOp, Derived>
    NullaryExpr(Index size, const CustomNullaryOp& func);
    template<typename CustomNullaryOp>
    static const CwiseNullaryOp<CustomNullaryOp, Derived>
    NullaryExpr(const CustomNullaryOp& func);

    static const ConstantReturnType Zero(Index rows, Index cols);
    static const ConstantReturnType Zero(Index size);
    static const ConstantReturnType Zero();
    static const ConstantReturnType Ones(Index rows, Index cols);
    static const ConstantReturnType Ones(Index size);
    static const ConstantReturnType Ones();

    void fill(const Scalar& value);
    Derived& setConstant(const Scalar& value);
    Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high);
    Derived& setLinSpaced(const Scalar& low, const Scalar& high);
    Derived& setZero();
    Derived& setOnes();
    Derived& setRandom();

    template<typename OtherDerived>
    bool isApprox(const DenseBase<OtherDerived>& other,
Don Gagne's avatar
Don Gagne committed
336
                  const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
LM's avatar
LM committed
337
    bool isMuchSmallerThan(const RealScalar& other,
Don Gagne's avatar
Don Gagne committed
338
                           const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
LM's avatar
LM committed
339 340
    template<typename OtherDerived>
    bool isMuchSmallerThan(const DenseBase<OtherDerived>& other,
Don Gagne's avatar
Don Gagne committed
341
                           const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
LM's avatar
LM committed
342

Don Gagne's avatar
Don Gagne committed
343 344 345 346 347 348 349
    bool isApproxToConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
    bool isConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
    bool isZero(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
    bool isOnes(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
    
    inline bool hasNaN() const;
    inline bool allFinite() const;
LM's avatar
LM committed
350 351 352 353

    inline Derived& operator*=(const Scalar& other);
    inline Derived& operator/=(const Scalar& other);

Don Gagne's avatar
Don Gagne committed
354
    typedef typename internal::add_const_on_value_type<typename internal::eval<Derived>::type>::type EvalReturnType;
LM's avatar
LM committed
355 356 357 358 359
    /** \returns the matrix or vector obtained by evaluating this expression.
      *
      * Notice that in the case of a plain matrix or vector (not an expression) this function just returns
      * a const reference, in order to avoid a useless copy.
      */
Don Gagne's avatar
Don Gagne committed
360
    EIGEN_STRONG_INLINE EvalReturnType eval() const
LM's avatar
LM committed
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
    {
      // Even though MSVC does not honor strong inlining when the return type
      // is a dynamic matrix, we desperately need strong inlining for fixed
      // size types on MSVC.
      return typename internal::eval<Derived>::type(derived());
    }

    /** swaps *this with the expression \a other.
      *
      */
    template<typename OtherDerived>
    void swap(const DenseBase<OtherDerived>& other,
              int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
    {
      SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
    }

    /** swaps *this with the matrix or array \a other.
      *
      */
    template<typename OtherDerived>
    void swap(PlainObjectBase<OtherDerived>& other)
    {
      SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
    }


    inline const NestByValue<Derived> nestByValue() const;
    inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
    inline ForceAlignedAccess<Derived> forceAlignedAccess();
    template<bool Enable> inline const typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf() const;
    template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();

    Scalar sum() const;
    Scalar mean() const;
    Scalar trace() const;

    Scalar prod() const;

    typename internal::traits<Derived>::Scalar minCoeff() const;
    typename internal::traits<Derived>::Scalar maxCoeff() const;

    template<typename IndexType>
    typename internal::traits<Derived>::Scalar minCoeff(IndexType* row, IndexType* col) const;
    template<typename IndexType>
    typename internal::traits<Derived>::Scalar maxCoeff(IndexType* row, IndexType* col) const;
    template<typename IndexType>
    typename internal::traits<Derived>::Scalar minCoeff(IndexType* index) const;
    template<typename IndexType>
    typename internal::traits<Derived>::Scalar maxCoeff(IndexType* index) const;

    template<typename BinaryOp>
    typename internal::result_of<BinaryOp(typename internal::traits<Derived>::Scalar)>::type
    redux(const BinaryOp& func) const;

    template<typename Visitor>
    void visit(Visitor& func) const;

    inline const WithFormat<Derived> format(const IOFormat& fmt) const;

    /** \returns the unique coefficient of a 1x1 expression */
    CoeffReturnType value() const
    {
      EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
      eigen_assert(this->rows() == 1 && this->cols() == 1);
      return derived().coeff(0,0);
    }

    bool all(void) const;
    bool any(void) const;
    Index count() const;

    typedef VectorwiseOp<Derived, Horizontal> RowwiseReturnType;
    typedef const VectorwiseOp<const Derived, Horizontal> ConstRowwiseReturnType;
    typedef VectorwiseOp<Derived, Vertical> ColwiseReturnType;
    typedef const VectorwiseOp<const Derived, Vertical> ConstColwiseReturnType;

    ConstRowwiseReturnType rowwise() const;
    RowwiseReturnType rowwise();
    ConstColwiseReturnType colwise() const;
    ColwiseReturnType colwise();

    static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index rows, Index cols);
    static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index size);
    static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random();

    template<typename ThenDerived,typename ElseDerived>
    const Select<Derived,ThenDerived,ElseDerived>
    select(const DenseBase<ThenDerived>& thenMatrix,
           const DenseBase<ElseDerived>& elseMatrix) const;

    template<typename ThenDerived>
    inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
Don Gagne's avatar
Don Gagne committed
454
    select(const DenseBase<ThenDerived>& thenMatrix, const typename ThenDerived::Scalar& elseScalar) const;
LM's avatar
LM committed
455 456 457

    template<typename ElseDerived>
    inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
Don Gagne's avatar
Don Gagne committed
458
    select(const typename ElseDerived::Scalar& thenScalar, const DenseBase<ElseDerived>& elseMatrix) const;
LM's avatar
LM committed
459 460 461 462

    template<int p> RealScalar lpNorm() const;

    template<int RowFactor, int ColFactor>
463 464 465 466
    inline const Replicate<Derived,RowFactor,ColFactor> replicate() const;
    
    typedef Replicate<Derived,Dynamic,Dynamic> ReplicateReturnType;
    inline const ReplicateReturnType replicate(Index rowFacor,Index colFactor) const;
LM's avatar
LM committed
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

    typedef Reverse<Derived, BothDirections> ReverseReturnType;
    typedef const Reverse<const Derived, BothDirections> ConstReverseReturnType;
    ReverseReturnType reverse();
    ConstReverseReturnType reverse() const;
    void reverseInPlace();

#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase
#   include "../plugins/BlockMethods.h"
#   ifdef EIGEN_DENSEBASE_PLUGIN
#     include EIGEN_DENSEBASE_PLUGIN
#   endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS

#ifdef EIGEN2_SUPPORT

    Block<Derived> corner(CornerType type, Index cRows, Index cCols);
    const Block<Derived> corner(CornerType type, Index cRows, Index cCols) const;
    template<int CRows, int CCols>
    Block<Derived, CRows, CCols> corner(CornerType type);
    template<int CRows, int CCols>
    const Block<Derived, CRows, CCols> corner(CornerType type) const;

#endif // EIGEN2_SUPPORT


    // disable the use of evalTo for dense objects with a nice compilation error
    template<typename Dest> inline void evalTo(Dest& ) const
    {
      EIGEN_STATIC_ASSERT((internal::is_same<Dest,void>::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS);
    }

  protected:
    /** Default constructor. Do nothing. */
    DenseBase()
    {
      /* Just checks for self-consistency of the flags.
       * Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
       */
#ifdef EIGEN_INTERNAL_DEBUGGING
      EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor))
                        && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))),
                          INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION)
#endif
    }

  private:
    explicit DenseBase(int);
    DenseBase(int,int);
    template<typename OtherDerived> explicit DenseBase(const DenseBase<OtherDerived>&);
};

Don Gagne's avatar
Don Gagne committed
519 520
} // end namespace Eigen

LM's avatar
LM committed
521
#endif // EIGEN_DENSEBASE_H