HouseholderSequence.h 18.6 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
#define EIGEN_HOUSEHOLDER_SEQUENCE_H

/** \ingroup Householder_Module
  * \householder_module
  * \class HouseholderSequence
  * \brief Sequence of Householder reflections acting on subspaces with decreasing size
  * \tparam VectorsType type of matrix containing the Householder vectors
  * \tparam CoeffsType  type of vector containing the Householder coefficients
  * \tparam Side        either OnTheLeft (the default) or OnTheRight
  *
  * This class represents a product sequence of Householder reflections where the first Householder reflection
  * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by
  * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace
  * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but
  * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections
  * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods
  * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(),
  * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence.
  *
  * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the
  * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i
  * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$
  * v_i \f$ is a vector of the form
  * \f[ 
  * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. 
  * \f]
  * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector.
  *
  * Typical usages are listed below, where H is a HouseholderSequence:
  * \code
  * A.applyOnTheRight(H);             // A = A * H
  * A.applyOnTheLeft(H);              // A = H * A
  * A.applyOnTheRight(H.adjoint());   // A = A * H^*
  * A.applyOnTheLeft(H.adjoint());    // A = H^* * A
  * MatrixXd Q = H;                   // conversion to a dense matrix
  * \endcode
  * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
  *
  * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
  *
  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
  */

namespace internal {

template<typename VectorsType, typename CoeffsType, int Side>
struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
{
  typedef typename VectorsType::Scalar Scalar;
  typedef typename VectorsType::Index Index;
  typedef typename VectorsType::StorageKind StorageKind;
  enum {
    RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime
                                        : traits<VectorsType>::ColsAtCompileTime,
    ColsAtCompileTime = RowsAtCompileTime,
    MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime
                                           : traits<VectorsType>::MaxColsAtCompileTime,
    MaxColsAtCompileTime = MaxRowsAtCompileTime,
    Flags = 0
  };
};

template<typename VectorsType, typename CoeffsType, int Side>
struct hseq_side_dependent_impl
{
  typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType;
  typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType;
  typedef typename VectorsType::Index Index;
  static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
  {
    Index start = k+1+h.m_shift;
    return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1);
  }
};

template<typename VectorsType, typename CoeffsType>
struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight>
{
  typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType;
  typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType;
  typedef typename VectorsType::Index Index;
  static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
  {
    Index start = k+1+h.m_shift;
    return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose();
  }
};

template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type
{
  typedef typename scalar_product_traits<OtherScalarType, typename MatrixType::Scalar>::ReturnType
    ResultScalar;
  typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
                 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type;
};

} // end namespace internal

template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence
  : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> >
{
    enum {
      RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime,
      ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime,
      MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime
    };
    typedef typename internal::traits<HouseholderSequence>::Scalar Scalar;
    typedef typename VectorsType::Index Index;

    typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType
            EssentialVectorType;

  public:

    typedef HouseholderSequence<
      VectorsType,
      typename internal::conditional<NumTraits<Scalar>::IsComplex,
        typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type,
        CoeffsType>::type,
      Side
    > ConjugateReturnType;

    /** \brief Constructor.
      * \param[in]  v      %Matrix containing the essential parts of the Householder vectors
      * \param[in]  h      Vector containing the Householder coefficients
      *
      * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The
      * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th
      * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the
      * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many
      * Householder reflections as there are columns.
      *
      * \note The %HouseholderSequence object stores \p v and \p h by reference.
      *
      * Example: \include HouseholderSequence_HouseholderSequence.cpp
      * Output: \verbinclude HouseholderSequence_HouseholderSequence.out
      *
      * \sa setLength(), setShift()
      */
    HouseholderSequence(const VectorsType& v, const CoeffsType& h)
      : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()),
        m_shift(0)
    {
    }

    /** \brief Copy constructor. */
    HouseholderSequence(const HouseholderSequence& other)
      : m_vectors(other.m_vectors),
        m_coeffs(other.m_coeffs),
        m_trans(other.m_trans),
        m_length(other.m_length),
        m_shift(other.m_shift)
    {
    }

    /** \brief Number of rows of transformation viewed as a matrix.
      * \returns Number of rows 
      * \details This equals the dimension of the space that the transformation acts on.
      */
    Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }

    /** \brief Number of columns of transformation viewed as a matrix.
      * \returns Number of columns
      * \details This equals the dimension of the space that the transformation acts on.
      */
    Index cols() const { return rows(); }

    /** \brief Essential part of a Householder vector.
      * \param[in]  k  Index of Householder reflection
      * \returns    Vector containing non-trivial entries of k-th Householder vector
      *
      * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of
      * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector
      * \f[ 
      * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. 
      * \f]
      * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v
      * passed to the constructor.
      *
      * \sa setShift(), shift()
      */
    const EssentialVectorType essentialVector(Index k) const
    {
      eigen_assert(k >= 0 && k < m_length);
      return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k);
    }

    /** \brief %Transpose of the Householder sequence. */
    HouseholderSequence transpose() const
    {
      return HouseholderSequence(*this).setTrans(!m_trans);
    }

    /** \brief Complex conjugate of the Householder sequence. */
    ConjugateReturnType conjugate() const
    {
      return ConjugateReturnType(m_vectors, m_coeffs.conjugate())
             .setTrans(m_trans)
             .setLength(m_length)
             .setShift(m_shift);
    }

    /** \brief Adjoint (conjugate transpose) of the Householder sequence. */
    ConjugateReturnType adjoint() const
    {
      return conjugate().setTrans(!m_trans);
    }

    /** \brief Inverse of the Householder sequence (equals the adjoint). */
    ConjugateReturnType inverse() const { return adjoint(); }

    /** \internal */
    template<typename DestType> void evalTo(DestType& dst) const
    {
      Index vecs = m_length;
      // FIXME find a way to pass this temporary if the user wants to
      Matrix<Scalar, DestType::RowsAtCompileTime, 1,
             AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> temp(rows());
      if(    internal::is_same<typename internal::remove_all<VectorsType>::type,DestType>::value
          && internal::extract_data(dst) == internal::extract_data(m_vectors))
      {
        // in-place
        dst.diagonal().setOnes();
        dst.template triangularView<StrictlyUpper>().setZero();
        for(Index k = vecs-1; k >= 0; --k)
        {
          Index cornerSize = rows() - k - m_shift;
          if(m_trans)
            dst.bottomRightCorner(cornerSize, cornerSize)
            .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &temp.coeffRef(0));
          else
            dst.bottomRightCorner(cornerSize, cornerSize)
              .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &temp.coeffRef(0));

          // clear the off diagonal vector
          dst.col(k).tail(rows()-k-1).setZero();
        }
        // clear the remaining columns if needed
        for(Index k = 0; k<cols()-vecs ; ++k)
          dst.col(k).tail(rows()-k-1).setZero();
      }
      else
      {
        dst.setIdentity(rows(), rows());
        for(Index k = vecs-1; k >= 0; --k)
        {
          Index cornerSize = rows() - k - m_shift;
          if(m_trans)
            dst.bottomRightCorner(cornerSize, cornerSize)
            .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &temp.coeffRef(0));
          else
            dst.bottomRightCorner(cornerSize, cornerSize)
              .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &temp.coeffRef(0));
        }
      }
    }

    /** \internal */
    template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
    {
      Matrix<Scalar,1,Dest::RowsAtCompileTime> temp(dst.rows());
      for(Index k = 0; k < m_length; ++k)
      {
        Index actual_k = m_trans ? m_length-k-1 : k;
        dst.rightCols(rows()-m_shift-actual_k)
           .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), &temp.coeffRef(0));
      }
    }

    /** \internal */
    template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
    {
      Matrix<Scalar,1,Dest::ColsAtCompileTime> temp(dst.cols());
      for(Index k = 0; k < m_length; ++k)
      {
        Index actual_k = m_trans ? k : m_length-k-1;
        dst.bottomRows(rows()-m_shift-actual_k)
           .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), &temp.coeffRef(0));
      }
    }

    /** \brief Computes the product of a Householder sequence with a matrix.
      * \param[in]  other  %Matrix being multiplied.
      * \returns    Expression object representing the product.
      *
      * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this
      * and \f$ M \f$ is the matrix \p other.
      */
    template<typename OtherDerived>
    typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const
    {
      typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type
        res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>());
      applyThisOnTheLeft(res);
      return res;
    }

    template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl;

    /** \brief Sets the length of the Householder sequence.
      * \param [in]  length  New value for the length.
      *
      * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set
      * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that
      * is smaller. After this function is called, the length equals \p length.
      *
      * \sa length()
      */
    HouseholderSequence& setLength(Index length)
    {
      m_length = length;
      return *this;
    }

    /** \brief Sets the shift of the Householder sequence.
      * \param [in]  shift  New value for the shift.
      *
      * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th
      * column of the matrix \p v passed to the constructor corresponds to the i-th Householder
      * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}}
      * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th
      * Householder reflection.
      *
      * \sa shift()
      */
    HouseholderSequence& setShift(Index shift)
    {
      m_shift = shift;
      return *this;
    }

    Index length() const { return m_length; }  /**< \brief Returns the length of the Householder sequence. */
    Index shift() const { return m_shift; }    /**< \brief Returns the shift of the Householder sequence. */

    /* Necessary for .adjoint() and .conjugate() */
    template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence;

  protected:

    /** \brief Sets the transpose flag.
      * \param [in]  trans  New value of the transpose flag.
      *
      * By default, the transpose flag is not set. If the transpose flag is set, then this object represents 
      * \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$.
      *
      * \sa trans()
      */
    HouseholderSequence& setTrans(bool trans)
    {
      m_trans = trans;
      return *this;
    }

    bool trans() const { return m_trans; }     /**< \brief Returns the transpose flag. */

    typename VectorsType::Nested m_vectors;
    typename CoeffsType::Nested m_coeffs;
    bool m_trans;
    Index m_length;
    Index m_shift;
};

/** \brief Computes the product of a matrix with a Householder sequence.
  * \param[in]  other  %Matrix being multiplied.
  * \param[in]  h      %HouseholderSequence being multiplied.
  * \returns    Expression object representing the product.
  *
  * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the
  * Householder sequence represented by \p h.
  */
template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side>
typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h)
{
  typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type
    res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>());
  h.applyThisOnTheRight(res);
  return res;
}

/** \ingroup Householder_Module \householder_module
  * \brief Convenience function for constructing a Householder sequence. 
  * \returns A HouseholderSequence constructed from the specified arguments.
  */
template<typename VectorsType, typename CoeffsType>
HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h)
{
  return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h);
}

/** \ingroup Householder_Module \householder_module
  * \brief Convenience function for constructing a Householder sequence. 
  * \returns A HouseholderSequence constructed from the specified arguments.
  * \details This function differs from householderSequence() in that the template argument \p OnTheSide of
  * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
  */
template<typename VectorsType, typename CoeffsType>
HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h)
{
  return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h);
}

#endif // EIGEN_HOUSEHOLDER_SEQUENCE_H