Scaling.h 5.53 KB
Newer Older
LM's avatar
LM committed
1
// This file is part of Eigen, a lightweight C++ template library
Don Gagne's avatar
Don Gagne committed
2
// for linear algebra.
LM's avatar
LM committed
3 4 5
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11

// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway

Don Gagne's avatar
Don Gagne committed
12
namespace Eigen { 
LM's avatar
LM committed
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Scaling
  *
  * \brief Represents a possibly non uniform scaling transformation
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients.
  * \param _Dim the  dimension of the space, can be a compile time value or Dynamic
  *
  * \note This class is not aimed to be used to store a scaling transformation,
  * but rather to make easier the constructions and updates of Transform objects.
  *
  * \sa class Translation, class Transform
  */
template<typename _Scalar, int _Dim>
class Scaling
{
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
  /** dimension of the space */
  enum { Dim = _Dim };
  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;
  /** corresponding vector type */
  typedef Matrix<Scalar,Dim,1> VectorType;
  /** corresponding linear transformation matrix type */
  typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
  /** corresponding translation type */
  typedef Translation<Scalar,Dim> TranslationType;
  /** corresponding affine transformation type */
  typedef Transform<Scalar,Dim> TransformType;

protected:

  VectorType m_coeffs;

public:

  /** Default constructor without initialization. */
  Scaling() {}
  /** Constructs and initialize a uniform scaling transformation */
  explicit inline Scaling(const Scalar& s) { m_coeffs.setConstant(s); }
  /** 2D only */
  inline Scaling(const Scalar& sx, const Scalar& sy)
  {
    ei_assert(Dim==2);
    m_coeffs.x() = sx;
    m_coeffs.y() = sy;
  }
  /** 3D only */
  inline Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
  {
    ei_assert(Dim==3);
    m_coeffs.x() = sx;
    m_coeffs.y() = sy;
    m_coeffs.z() = sz;
  }
  /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
  explicit inline Scaling(const VectorType& coeffs) : m_coeffs(coeffs) {}

  const VectorType& coeffs() const { return m_coeffs; }
  VectorType& coeffs() { return m_coeffs; }

  /** Concatenates two scaling */
  inline Scaling operator* (const Scaling& other) const
  { return Scaling(coeffs().cwise() * other.coeffs()); }

  /** Concatenates a scaling and a translation */
  inline TransformType operator* (const TranslationType& t) const;

  /** Concatenates a scaling and an affine transformation */
  inline TransformType operator* (const TransformType& t) const;

  /** Concatenates a scaling and a linear transformation matrix */
  // TODO returns an expression
  inline LinearMatrixType operator* (const LinearMatrixType& other) const
  { return coeffs().asDiagonal() * other; }

  /** Concatenates a linear transformation matrix and a scaling */
  // TODO returns an expression
  friend inline LinearMatrixType operator* (const LinearMatrixType& other, const Scaling& s)
  { return other * s.coeffs().asDiagonal(); }

  template<typename Derived>
  inline LinearMatrixType operator*(const RotationBase<Derived,Dim>& r) const
  { return *this * r.toRotationMatrix(); }

  /** Applies scaling to vector */
  inline VectorType operator* (const VectorType& other) const
  { return coeffs().asDiagonal() * other; }

  /** \returns the inverse scaling */
  inline Scaling inverse() const
  { return Scaling(coeffs().cwise().inverse()); }

  inline Scaling& operator=(const Scaling& other)
  {
    m_coeffs = other.m_coeffs;
    return *this;
  }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type cast() const
  { return typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type(*this); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit Scaling(const Scaling<OtherScalarType,Dim>& other)
  { m_coeffs = other.coeffs().template cast<Scalar>(); }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  bool isApprox(const Scaling& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
  { return m_coeffs.isApprox(other.m_coeffs, prec); }

};

/** \addtogroup Geometry_Module */
//@{
typedef Scaling<float, 2> Scaling2f;
typedef Scaling<double,2> Scaling2d;
typedef Scaling<float, 3> Scaling3f;
typedef Scaling<double,3> Scaling3d;
//@}

template<typename Scalar, int Dim>
inline typename Scaling<Scalar,Dim>::TransformType
Scaling<Scalar,Dim>::operator* (const TranslationType& t) const
{
  TransformType res;
  res.matrix().setZero();
  res.linear().diagonal() = coeffs();
  res.translation() = m_coeffs.cwise() * t.vector();
  res(Dim,Dim) = Scalar(1);
  return res;
}

template<typename Scalar, int Dim>
inline typename Scaling<Scalar,Dim>::TransformType
Scaling<Scalar,Dim>::operator* (const TransformType& t) const
{
  TransformType res = t;
  res.prescale(m_coeffs);
  return res;
}
Don Gagne's avatar
Don Gagne committed
166 167

} // end namespace Eigen