LinearGenerator.cpp 13 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include "LinearGenerator.h"

#include "QGCLoggingCategory.h"
QGC_LOGGING_CATEGORY(LinearGeneratorLog, "LinearGeneratorLog")

#define CLIPPER_SCALE 1000000
#include "clipper/clipper.hpp"

#include "SnakeTile.h"
#include "Wima/RoutingThread.h"

namespace routing {

bool linearTransects(const snake::FPolygon &polygon,
                     const std::vector<snake::FPolygon> &tiles,
                     snake::Length distance, snake::Angle angle,
                     snake::Length minLength, snake::Transects &transects);

const char *LinearGenerator::settingsGroup = "LinearGenerator";
const char *LinearGenerator::distanceName = "TransectDistance";
const char *LinearGenerator::alphaName = "Alpha";
const char *LinearGenerator::minLengthName = "MinLength";

LinearGenerator::LinearGenerator(QObject *parent)
    : LinearGenerator(nullptr, parent) {}

LinearGenerator::LinearGenerator(GeneratorBase::Data d, QObject *parent)
    : GeneratorBase(d, parent),
      _metaDataMap(FactMetaData::createMapFromJsonFile(
          QStringLiteral(":/json/LinearGenerator.SettingsGroup.json"), this)),
      _distance(settingsGroup, _metaDataMap[distanceName]),
      _alpha(settingsGroup, _metaDataMap[alphaName]),
      _minLength(settingsGroup, _metaDataMap[minLengthName]) {
  establishConnections();
}

37
QString LinearGenerator::editorQml() {
38 39 40 41 42 43 44 45 46 47 48
  return QStringLiteral("LinearGeneratorEditor.qml");
}

QString LinearGenerator::name() { return QStringLiteral("Linear Generator"); }

QString LinearGenerator::abbreviation() { return QStringLiteral("L. Gen."); }

bool LinearGenerator::get(Generator &generator) {
  if (_d) {
    if (this->_d->isValid()) {
      // Prepare data.
49 50 51 52 53 54
      auto origin = this->_d->origin();
      origin.setAltitude(0);
      if (!origin.isValid()) {
        qCWarning(LinearGeneratorLog) << "get(): origin invalid.";
      }

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
      auto geoPolygon = this->_d->measurementArea().coordinateList();
      for (auto &v : geoPolygon) {
        if (v.isValid()) {
          v.setAltitude(0);
        } else {
          qCWarning(LinearGeneratorLog) << "get(): measurement area invalid.";
          for (const auto &w : geoPolygon) {
            qCWarning(LinearGeneratorLog) << w;
          }
          return false;
        }
      }
      auto pPolygon = std::make_shared<snake::FPolygon>();
      snake::areaToEnu(origin, geoPolygon, *pPolygon);

      // Progress and tiles.
      const auto &progress = this->_d->measurementArea().progress();
      const auto *tiles = this->_d->measurementArea().tiles();
      auto pTiles = std::make_shared<std::vector<snake::FPolygon>>();
      if (progress.size() == tiles->count()) {
        for (int i = 0; i < tiles->count(); ++i) {
          if (progress[i] == 100) {
            const auto *tile = tiles->value<const SnakeTile *>(i);
            if (tile != nullptr) {
              snake::FPolygon tileENU;
              snake::areaToEnu(origin, tile->coordinateList(), tileENU);
              pTiles->push_back(std::move(tileENU));
            } else {
              qCWarning(LinearGeneratorLog)
                  << "get(): progress.size() != tiles->count().";
              return false;
            }
          }
        }
      } else {
        qCWarning(LinearGeneratorLog)
            << "get(): progress.size() != tiles->count().";
        return false;
      }

      auto geoDepot = this->_d->serviceArea().depot();
      if (!geoDepot.isValid()) {
        qCWarning(LinearGeneratorLog) << "get(): depot invalid." << geoDepot;
        return false;
      }
      snake::FPoint depot;
      snake::toENU(origin, geoDepot, depot);

      // Fetch transect parameter.
      auto distance =
          snake::Length(this->_distance.rawValue().toDouble() * bu::si::meter);
      auto minLength =
          snake::Length(this->_minLength.rawValue().toDouble() * bu::si::meter);
      auto alpha =
          snake::Angle(this->_alpha.rawValue().toDouble() * bu::degree::degree);
      generator = [depot, pPolygon, pTiles, distance, alpha,
                   minLength](snake::Transects &transects) -> bool {
        bool value = linearTransects(*pPolygon, *pTiles, distance, alpha,
                                     minLength, transects);
        transects.insert(transects.begin(), snake::FLineString{depot});
        return value;
      };
      return true;
    } else {
      qCWarning(LinearGeneratorLog) << "get(): data invalid.";
      return false;
    }
  } else {
    qCWarning(LinearGeneratorLog) << "get(): data member not set.";
    return false;
  }
}

Fact *LinearGenerator::distance() { return &_distance; }

Fact *LinearGenerator::alpha() { return &_alpha; }

Fact *LinearGenerator::minLength() { return &_minLength; }

void LinearGenerator::establishConnections() {
  if (this->_d && !this->_connectionsEstablished) {
    connect(this->_d.get(), &WimaPlanData::measurementAreaChanged, this,
            &GeneratorBase::generatorChanged);
    connect(this->_d.get(), &WimaPlanData::originChanged, this,
            &GeneratorBase::generatorChanged);
    connect(&this->_d->measurementArea(),
            &WimaMeasurementAreaData::progressChanged, this,
            &GeneratorBase::generatorChanged);
    connect(&this->_d->measurementArea(),
            &WimaMeasurementAreaData::tileDataChanged, this,
            &GeneratorBase::generatorChanged);
    connect(&this->_d->serviceArea(), &WimaServiceAreaData::depotChanged, this,
            &GeneratorBase::generatorChanged);
    connect(this->distance(), &Fact::rawValueChanged, this,
            &GeneratorBase::generatorChanged);
    connect(this->alpha(), &Fact::rawValueChanged, this,
            &GeneratorBase::generatorChanged);
    connect(this->minLength(), &Fact::rawValueChanged, this,
            &GeneratorBase::generatorChanged);
    this->_connectionsEstablished = true;
  }
}

void LinearGenerator::deleteConnections() {
  if (this->_d && this->_connectionsEstablished) {
    disconnect(this->_d.get(), &WimaPlanData::measurementAreaChanged, this,
               &GeneratorBase::generatorChanged);
    disconnect(this->_d.get(), &WimaPlanData::originChanged, this,
               &GeneratorBase::generatorChanged);
    disconnect(&this->_d->measurementArea(),
               &WimaMeasurementAreaData::progressChanged, this,
               &GeneratorBase::generatorChanged);
    disconnect(&this->_d->measurementArea(),
               &WimaMeasurementAreaData::tileDataChanged, this,
               &GeneratorBase::generatorChanged);
    disconnect(&this->_d->serviceArea(), &WimaServiceAreaData::depotChanged,
               this, &GeneratorBase::generatorChanged);
    disconnect(this->distance(), &Fact::rawValueChanged, this,
               &GeneratorBase::generatorChanged);
    disconnect(this->alpha(), &Fact::rawValueChanged, this,
               &GeneratorBase::generatorChanged);
    disconnect(this->minLength(), &Fact::rawValueChanged, this,
               &GeneratorBase::generatorChanged);
    this->_connectionsEstablished = false;
  }
}

bool linearTransects(const snake::FPolygon &polygon,
                     const std::vector<snake::FPolygon> &tiles,
                     snake::Length distance, snake::Angle angle,
                     snake::Length minLength, snake::Transects &transects) {
  namespace tr = bg::strategy::transform;
  auto s1 = std::chrono::high_resolution_clock::now();

  // Check preconitions
  if (polygon.outer().size() >= 3) {
    // Convert to ENU system.
    std::string error;
    // Check validity.
    if (!bg::is_valid(polygon, error)) {
      std::stringstream ss;
      ss << bg::wkt(polygon);

      qCWarning(LinearGeneratorLog) << "linearTransects(): "
                                       "invalid polygon. "
                                    << error.c_str() << ss.str().c_str();
    } else {
      tr::rotate_transformer<bg::degree, double, 2, 2> rotate(angle.value() *
                                                              180 / M_PI);
      // Rotate polygon by angle and calculate bounding box.
      snake::FPolygon polygonENURotated;
      bg::transform(polygon.outer(), polygonENURotated.outer(), rotate);
      snake::FBox box;
      boost::geometry::envelope(polygonENURotated, box);
      double x0 = box.min_corner().get<0>();
      double y0 = box.min_corner().get<1>();
      double x1 = box.max_corner().get<0>();
      double y1 = box.max_corner().get<1>();

      // Generate transects and convert them to clipper path.
      size_t num_t = ceil((y1 - y0) / distance.value()); // number of transects
      vector<ClipperLib::Path> transectsClipper;
      transectsClipper.reserve(num_t);
      for (size_t i = 0; i < num_t; ++i) {
        // calculate transect
        snake::FPoint v1{x0, y0 + i * distance.value()};
        snake::FPoint v2{x1, y0 + i * distance.value()};
        snake::FLineString transect;
        transect.push_back(v1);
        transect.push_back(v2);
        // transform back
        snake::FLineString temp_transect;
        tr::rotate_transformer<bg::degree, double, 2, 2> rotate_back(
            -angle.value() * 180 / M_PI);
        bg::transform(transect, temp_transect, rotate_back);
        // to clipper
        ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(
                                    temp_transect[0].get<0>() * CLIPPER_SCALE),
                                static_cast<ClipperLib::cInt>(
                                    temp_transect[0].get<1>() * CLIPPER_SCALE)};
        ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(
                                    temp_transect[1].get<0>() * CLIPPER_SCALE),
                                static_cast<ClipperLib::cInt>(
                                    temp_transect[1].get<1>() * CLIPPER_SCALE)};
        ClipperLib::Path path{c1, c2};
        transectsClipper.push_back(path);
      }

      if (transectsClipper.size() == 0) {
        std::stringstream ss;
        ss << "Not able to generate transects. Parameter: distance = "
           << distance << std::endl;
        qCWarning(LinearGeneratorLog)
            << "linearTransects(): " << ss.str().c_str();
        return false;
      }

      // Convert measurement area to clipper path.
      snake::FPolygon shrinked;
      snake::offsetPolygon(polygon, shrinked, -0.2);
      auto &outer = shrinked.outer();
      ClipperLib::Path polygonClipper;
      for (auto vertex : outer) {
        polygonClipper.push_back(ClipperLib::IntPoint{
            static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
            static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
      }

      // Perform clipping.
      // Clip transects to measurement area.
      ClipperLib::Clipper clipper;
      clipper.AddPath(polygonClipper, ClipperLib::ptClip, true);
      clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
      ClipperLib::PolyTree clippedTransecs;
      clipper.Execute(ClipperLib::ctIntersection, clippedTransecs,
                      ClipperLib::pftNonZero, ClipperLib::pftNonZero);

      // Subtract holes.
      if (tiles.size() > 0) {
        vector<ClipperLib::Path> processedTiles;
        for (const auto &tile : tiles) {
          ClipperLib::Path path;
          for (const auto &v : tile.outer()) {
            path.push_back(ClipperLib::IntPoint{
                static_cast<ClipperLib::cInt>(v.get<0>() * CLIPPER_SCALE),
                static_cast<ClipperLib::cInt>(v.get<1>() * CLIPPER_SCALE)});
          }
          processedTiles.push_back(std::move(path));
        }

        clipper.Clear();
        for (const auto &child : clippedTransecs.Childs) {
          clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
        }
        clipper.AddPaths(processedTiles, ClipperLib::ptClip, true);
        clippedTransecs.Clear();
        clipper.Execute(ClipperLib::ctDifference, clippedTransecs,
                        ClipperLib::pftNonZero, ClipperLib::pftNonZero);
      }

      // Extract transects from  PolyTree and convert them to BoostLineString
      for (const auto &child : clippedTransecs.Childs) {
        const auto &clipperTransect = child->Contour;
        snake::FPoint v1{
            static_cast<double>(clipperTransect[0].X) / CLIPPER_SCALE,
            static_cast<double>(clipperTransect[0].Y) / CLIPPER_SCALE};
        snake::FPoint v2{
            static_cast<double>(clipperTransect[1].X) / CLIPPER_SCALE,
            static_cast<double>(clipperTransect[1].Y) / CLIPPER_SCALE};

        snake::FLineString transect{v1, v2};
        if (bg::length(transect) >= minLength.value()) {
          transects.push_back(transect);
        }
      }

      if (transects.size() == 0) {
        std::stringstream ss;
        ss << "Not able to  generatetransects. Parameter: minLength = "
           << minLength << std::endl;
        qCWarning(LinearGeneratorLog)
            << "linearTransects(): " << ss.str().c_str();
        return false;
      }

      qCWarning(LinearGeneratorLog)
          << "linearTransects(): time: "
          << std::chrono::duration_cast<std::chrono::milliseconds>(
                 std::chrono::high_resolution_clock::now() - s1)
                 .count()
          << " ms";
      return true;
    }
  }
  return false;
}
} // namespace routing