geodesic.mac 50.2 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/*
Solve the direct and inverse geodesic problems accurately.

Copyright (c) Charles Karney (2013-2019) <charles@karney.com> and
licensed under the MIT/X11 License.  For more information, see
https://geographiclib.sourceforge.io/

References:

   Charles F. F. Karney,
   Algorithms for geodesics, J. Geodesy 87, 43-55 (2013),
   https://doi.org/10.1007/s00190-012-0578-z
   Addenda: https://geographiclib.sourceforge.io/geod-addenda.html

This program solves the geodesic problem either using series expansions
(exact : false) or using elliptic integrals (exact : true).  Elliptic
integrals give reliably high accuracy (especially when f is large).
Note that the area calculation always uses the series expansion (I don't
know how to express the integrals in terms of elliptic integrals).

Before running this file, you need to compute and save the series
expansions by editing geod.mac setting maxpow appropriately (near the
end of the file) and uncommenting the last line (to save the results).
If you're testing the accuracy of the series expansions (exact : false)
or if you're interested in accurate results for the area, that pick a
largish value of maxpow (e.g., 20).  This program can truncate the
series to a smaller power.  If you just want to compute accurate
geodesics and are not interested in the area, then use elliptic
integrals (exact : true) and leave maxpow at some small value (6 or 8).

To use this program,

(1) Edit the file name for the series "geod30.lsp" to reflect the value
of maxpow that you used.

(2) Set fpprec (the number of decimal digits of precision).

(3) Set exact (true for elliptic integrals, false for series).

(4) If exact = false, set the order of the series you want to use, by
replacing the "20" in min(maxpow,20) below.

(5) Start maxima and run

  load("geodesic.mac")$

(If you want to change fpprec, exact, or the order of the series, you
should edit this file and run this command again.)

(6) Define an ellipsoid with

  g:geod_init(radius, flattening)$

The ellipsoids wgs84 and grs80 are pre-defined.

(7) To solve a direct problem, run

  geod_direct(ellipsoid, lat1, lon1, azi1, s12);

e.g.,

  geod_direct(wgs84, -30, 0, 45, 1b7);

This returns a list, [a12, lat2, lon2, azi2, s12, m12, M12, M21, S12], e.g.,

[9.00979560785581153132573611946234278938679821643464129576496b1,
3.795350501490084914310911431201705948430953526031024848204b1,
6.3403810943391419431089434638892210208040664981080107562114b1,
5.09217379721155238753530133334186917347878103616352193700526b1,1.0b7,
6.35984161356437923135381788735707599997546833534230510111197b6,
-1.42475315175601879366432145888870774855600761387337970018946b-3,
-7.47724030796032158868881196081763293754486469000152919698785b-4,
4.18229766667689593851692491830627309580972454148317773382384b12]

(8) To solve an inverse problem, run

  geod_inverse(ellipsoid, lat1, lon1, lat2, lon2);

e.g.,

  geod_inverse(wgs84, -30, 0, 29.9b0, 179.9b0);

This returns a list, [a12, s12, azi1, azi2, m12, M12, M21, S12], e.g.,

[1.79898924051433853264945993266804037171884583041584874134816b2,
1.99920903023269266279365620501124020214744990997998731526732b7,
1.70994569965518052741917124376016361591705298855243347424863b2,
8.99634915141674951478756137150809390696858860117887233257945b0,
6.04691725017600149958466836698242794713940408239599801996017b4,
-9.95488849775559128989753386111595867497859420132749768254471b-1,
-1.00448979492598025351148808245250847420628601706577993586242b0,
-1.14721359300439474273586680489951630835335433189068889945966b14]

(9) Use geod_polygonarea(ellipsoid, points) to compute polygon areas.

(10) The interface is copied from the C library for geodesics which is
documented at

  https://geographiclib.sourceforge.io/html/C/index.html

*/

/* The corresponding version of GeographicLib */
geod_version:[1,50,0]$

/* Load series created by geod.mac (NEED TO UNCOMMENT THE LAST LINE OF
geod.mac TO GENERATE THIS FILE). */
load("geod30.lsp")$

/* Edit to reflect precision and order of the series to be used */
( fpprec:60, exact:true,
  GEOGRAPHICLIB_GEODESIC_ORDER:if exact then maxpow else min(maxpow,20))$

if exact then load("ellint.mac")$

( nA1   :GEOGRAPHICLIB_GEODESIC_ORDER,
  nC1   :GEOGRAPHICLIB_GEODESIC_ORDER,
  nC1p  :GEOGRAPHICLIB_GEODESIC_ORDER,
  nA2   :GEOGRAPHICLIB_GEODESIC_ORDER,
  nC2   :GEOGRAPHICLIB_GEODESIC_ORDER,
  nA3   :GEOGRAPHICLIB_GEODESIC_ORDER,
  nA3x  :nA3,
  nC3   :GEOGRAPHICLIB_GEODESIC_ORDER,
  nC3x  :((nC3 * (nC3 - 1)) / 2),
  nC4   :GEOGRAPHICLIB_GEODESIC_ORDER,
  nC4x  :((nC4 * (nC4 + 1)) / 2) )$

taylordepth:5$
jtaylor(expr,var1,var2,ord):=expand(subst([zz=1],
    ratdisrep(taylor(subst([var1=zz*var1,var2=zz*var2],expr),zz,0,ord))))$
ataylor(expr,var,ord):=expand(ratdisrep(taylor(expr,var,0,ord)))$
if not exact then (
  A1m1f(eps):=''((horner(ataylor(A1*(1-eps)-1,eps,nA1))
      +eps)/(1-eps)),
  C1f(eps):=''(block([l:[]],for i:1 thru nC1 do
      l:endcons(horner(ataylor(C1[i],eps,nC1)),l),l)),
  C1pf(eps):=''(block([l:[]],for i:1 thru nC1p do
      l:endcons(horner(ataylor(C1p[i],eps,nC1p)),l),l)),
  A2m1f(eps):=''((horner(ataylor(A2*(1+eps)-1,eps,nA2))
      -eps)/(1+eps)),
  C2f(eps):=''(block([l:[]],for i:1 thru nC2 do
      l:endcons(horner(ataylor(C2[i],eps,nC2)),l),l)),
  A3coeff(n):=
  ''(block([q:jtaylor(A3,n,eps,nA3-1),l:[]],
      for i:0 thru nA3-1 do l:endcons(horner(coeff(q,eps,i)),l),
      l)),
  C3coeff(n):=
  ''(block([q,l:[]],
      for m:1 thru nC3-1 do (
        q:jtaylor(C3[m],n,eps,nC3-1),
        for j:m thru nC3-1 do l:endcons(horner(coeff(q,eps,j)),l)),
      l)))$
C4coeff(n):=
''(block([q,l:[]],
    for m:0 thru nC4-1 do (
      q:jtaylor(C4[m],n,eps,nC4-1),
      for j:m thru nC4-1 do l:endcons(horner(coeff(q,eps,j)),l)),
    l))$

( digits:floor((fpprec-1)*log(10.0)/log(2.0)),
  epsilon : 0.5b0^(digits - 1),
  realmin : 0.1b0^(3*fpprec),
  pi : bfloat(%pi),
  maxit1 : 100,
  maxit2 : maxit1 + digits + 10,
  tiny : sqrt(realmin),
  tol0 : epsilon,
  tol1 : 200 * tol0,
  tol2 : sqrt(tol0),
  tolb : tol0 * tol2,
  xthresh : 1000 * tol2,
  degree : pi/180,
  NaN : 'nan )$

sq(x):=x^2$
hypotx(x, y):=sqrt(x * x + y * y)$
/* doesn't handle -0.0 */
copysign(x, y):=abs(x) * (if y < 0b0 then -1 else 1)$
/*
pow(x,y):=x^y$
cbrtx(x) := block([y:pow(abs(x), 1/3b0)],
  if x < 0b0 then -y else y)$
*/
cbrtx(x):=x^(1/3)$

sumx(u, v):=block([s,up,vpp,t],
  s : u + v,
  up : s - v,
  vpp : s - up,
  up : up-u,
  vpp : vpp-v,
  t : -(up + vpp),
  [s,t])$

swapx(x, y):=[y,x]$

norm2(x, y):=block([r : hypotx(x, y)], [x/r, y/r])$

AngNormalize(x):=block([y:x-360b0*round(x/360b0)],
  if y <= -180b0 then y+360b0 else if y <= 180b0 then y else y-360b0)$

AngDiff(x, y) := block([t,d,r:sumx(AngNormalize(-x),AngNormalize(y))],
  d:AngNormalize(r[1]), t:r[2],
  sumx(if d = 180b0 and t > 0b0 then -180b0 else d, t))$

AngRound(x) := block([z:1/16b0, y:abs(x)],
  if x = 0b0 then return(x),
  y : if y < z then z - (z - y) else y,
  if x < 0b0 then -y else y)$

sincosdx(x):=block([r,q:round(x/90b0),s,c],
  r:(x-q*90b0)*degree,
  s:sin(r), c:cos(r),
  q:mod(q,4),
  r:
  if     q = 0 then [ s,  c]
  elseif q = 1 then [ c, -s]
  elseif q = 2 then [-s, -c]
  else              [-c,  s],
  if x # 0b0 then r:0b0+r,
  r)$

atan2dx(y,x):=block([q,xx,yy,ang],
  if abs(y) > abs(x)
  then (xx:y, yy:x, q:2)
  else (xx:x, yy:y, q:0),
  if xx < 0
  then (xx:-xx, q:q+1),
  ang:atan2(yy, xx) / degree,
  if     q = 0 then ang
  elseif q = 1 then (if y >= 0b0 then 180b0 else -180b0) - ang
  elseif q = 2 then  90 - ang
  else              -90 + ang)$

/* Indices in geodesic struct */
block([i:0], g_a:(i:i+1), g_f:(i:i+1), g_f1:(i:i+1), g_e2:(i:i+1),
  g_ep2:(i:i+1), g_n:(i:i+1), g_b:(i:i+1), g_c2:(i:i+1), g_etol2:(i:i+1),
  g_A3x:(i:i+1), g_C3x:(i:i+1), g_C4x:(i:i+1) )$
geod_init(a, f):= (a:bfloat(a),f:bfloat(f),
  block([f1,e2,ep2,n,b,c2,etol2],
    f1:1-f, e2:f*(2-f), ep2:e2/f1^2, n:f/(2-f), b:a*f1,
    c2 : (sq(a) + sq(b) *
      (if e2 = 0b0 then 1b0 else
        (if e2 > 0b0 then atanh(sqrt(e2)) else atan(sqrt(-e2))) /
        sqrt(abs(e2))))/2, /* authalic radius squared */
    /* The sig12 threshold for "really short".  Using the auxiliary sphere
    solution with dnm computed at (bet1 + bet2) / 2, the relative error in
    the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
    (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000.  For a
    given f and sig12, the max error occurs for lines near the pole.  If
    the old rule for computing dnm = (dn1 + dn2)/2 is used, then the error
    increases by a factor of 2.)  Setting this equal to epsilon gives
    sig12 = etol2.  Here 0.1 is a safety factor (error decreased by 100)
    and max(0.001, abs(f)) stops etol2 getting too large in the nearly
    spherical case. */
    etol2 : 0.1b0 * tol2 / sqrt( max(0.001b0, abs(f)) * min(1b0, 1-f/2) / 2 ),
    [ a, f, f1, e2,
    ep2, n, b, c2, etol2,
    if exact then [] else bfloat(A3coeff(n)),
    if exact then [] else bfloat(C3coeff(n)),
    bfloat(C4coeff(n))]))$

/* Indices into geodesicline struct */
block([i:0],
  l_lat1:(i:i+1), l_lon1:(i:i+1), l_azi1:(i:i+1), l_a:(i:i+1), l_f:(i:i+1),
  l_b:(i:i+1), l_c2:(i:i+1), l_f1:(i:i+1), l_salp0:(i:i+1), l_calp0:(i:i+1),
  l_k2:(i:i+1), l_salp1:(i:i+1), l_calp1:(i:i+1),
  l_ssig1:(i:i+1), l_csig1:(i:i+1), l_dn1:(i:i+1),
  l_stau1:(i:i+1), l_ctau1:(i:i+1), l_somg1:(i:i+1), l_comg1:(i:i+1),
  if exact then (l_e2:(i:i+1), l_cchi1:(i:i+1), l_A4:(i:i+1), l_B41:(i:i+1),
    l_E0:(i:i+1), l_D0:(i:i+1), l_H0:(i:i+1),
    l_E1:(i:i+1), l_D1:(i:i+1), l_H1:(i:i+1),
    l_C4a:(i:i+1), l_E:(i:i+1),
    e_k2:1, e_alpha2:2, e_ec:3, e_dc:4, e_hc:5)
  else (l_A1m1:(i:i+1), l_A2m1:(i:i+1), l_A3c:(i:i+1),
    l_B11:(i:i+1), l_B21:(i:i+1), l_B31:(i:i+1),
    l_A4:(i:i+1), l_B41:(i:i+1), l_C1a:(i:i+1), l_C1pa:(i:i+1),
    l_C2a:(i:i+1), l_C3a:(i:i+1),
    l_C4a:(i:i+1) ))$

Ef(k2, alpha2):=if exact then [k2, alpha2, ec(k2), dc(k2), hc(k2, alpha2)]
else []$

geod_lineinit(g,lat1,lon1,azi1):=block([a, f,
  b, c2, f1, salp0, calp0,
  k2, salp1, calp1,
  ssig1, csig1, dn1,
  stau1, ctau1, somg1, comg1,
  A1m1, A2m1, A3c, B11, B21, B31,
  A4, B41, C1a, C1pa, C2a, C3a,
  C4a,
  cbet1, sbet1, eps,
  e2, cchi1, A4, B41, E0, D0, H0, E1, D1, H1, C4a, E],
  lat1:bfloat(lat1),lon1:bfloat(lon1), azi1:bfloat(azi1),
  a : g[g_a],
  f : g[g_f],
  b : g[g_b],
  c2 : g[g_c2],
  f1 : g[g_f1],
  e2 : g[g_e2],
  lat1 : lat1,
  /* If caps is 0 assume the standard direct calculation
  caps = (caps ? caps : GEOD_DISTANCE_IN | GEOD_LONGITUDE) |
  GEOD_LATITUDE | GEOD_AZIMUTH, Always allow latitude and azimuth
  Guard against underflow in salp0 */
  azi1 : AngNormalize(azi1),
  /* Don't normalize lon1... */
  block([t:sincosdx(AngRound(azi1))], salp1:t[1], calp1:t[2]),
  block([t:sincosdx(AngRound(lat1))],
        sbet1:t[1], cbet1:t[2]), sbet1 : f1 * sbet1,
  block([t:norm2(sbet1, cbet1)], sbet1:t[1], cbet1:t[2]),
  /* Ensure cbet1 = +epsilon at poles */
  cbet1 = max(tiny, cbet1),
  dn1 : sqrt(1 + g[g_ep2] * sq(sbet1)),
  /* Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0), */
  salp0 : salp1 * cbet1, /* alp0 in [0, pi/2 - |bet1|] */
  /* Alt: calp0 : hypot(sbet1, calp1 * cbet1).  The following
  is slightly better (consider the case salp1 = 0). */
  calp0 : hypotx(calp1, salp1 * sbet1),
  /* Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
  sig = 0 is nearest northward crossing of equator.
  With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
  With bet1 =  pi/2, alp1 = -pi, sig1 =  pi/2
  With bet1 = -pi/2, alp1 =  0 , sig1 = -pi/2
  Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
  With alp0 in (0, pi/2], quadrants for sig and omg coincide.
  No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
  With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi. */
  ssig1 : sbet1, somg1 : salp0 * sbet1,
  csig1 : comg1 : if sbet1 # 0b0 or calp1 # 0b0 then cbet1 * calp1 else 1b0,
  /* Without normalization we have schi1 = somg1. */
  cchi1 : f1 * dn1 * comg1,
  /* sig1 in (-pi, pi] */
  block([t:norm2(ssig1, csig1)], ssig1:t[1], csig1:t[2]),
  /* norm2 (somg1, comg1); -- don't need to normalize!
  norm2 (schi1, cchi1); -- don't need to normalize! */
  k2 : sq(calp0) * g[g_ep2],
  eps : k2 / (2 * (1 + sqrt(1 + k2)) + k2),
  E:Ef(-k2,-g[g_ep2]),
  block([s,c],
    if exact then (E0 : E[e_ec]/(pi/2),
      E1 : deltae(ssig1,csig1,dn1,E[e_k2],E[e_ec]),
      s:sin(E1),c:cos(E1))
    else ( A1m1 : A1m1f(eps),
      C1a : C1f(eps),
      B11 : SinCosSeries(true, ssig1, csig1, C1a),
      s : sin(B11), c : cos(B11)),
    /* tau1 = sig1 + B11 */
    stau1 : ssig1 * c + csig1 * s,
    ctau1 : csig1 * c - ssig1 * s
    /* Not necessary because C1pa reverts C1a
    B11 = -SinCosSeries(true, stau1, ctau1, C1pa, nC1p) */
    ),
  if exact then (D0 : E[e_dc]/(pi/2),
    D1 : deltad(ssig1, csig1, dn1, E[e_k2], E[e_dc]),
    H0 : E[e_hc]/(pi/2),
    H1 : deltah(ssig1, csig1, dn1, E[e_k2], E[e_alpha2], E[e_hc]))
  else ( C1pa: C1pf(eps),
    A2m1 : A2m1f(eps),
    C2a : C2f(eps),
    B21 : SinCosSeries(true, ssig1, csig1, C2a),
    C3a : C3f(g, eps),
    A3c : -f * salp0 * A3f(g, eps),
    B31 : SinCosSeries(true, ssig1, csig1, C3a)),
  C4a : C4f(g, eps),
  /* Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0) */
  A4 : sq(a) * calp0 * salp0 * e2,
  B41 : SinCosSeries(false, ssig1, csig1, C4a),
  if exact then
    [ lat1, lon1, azi1, a, f,
    b, c2, f1, salp0, calp0,
    k2, salp1, calp1,
    ssig1, csig1, dn1,
    stau1, ctau1, somg1, comg1,
    e2, cchi1, A4, B41, E0, D0, H0, E1, D1, H1, C4a, E]
  else
    [ lat1, lon1, azi1, a, f,
    b, c2, f1, salp0, calp0,
    k2, salp1, calp1,
    ssig1, csig1, dn1,
    stau1, ctau1, somg1, comg1,
    A1m1, A2m1, A3c, B11, B21, B31,
    A4, B41, C1a, C1pa, C2a, C3a,
    C4a] )$

/* Return [a12, lat2, lon2, azi2, s12, m12, M12, M21, S12] */
geod_genposition(l, arcmode,  s12_a12):=block(
  [ lat2 : 0, lon2 : 0, azi2 : 0, s12 : 0,
  m12 : 0, M12 : 0, M21 : 0, S12 : 0,
  /* Avoid warning about uninitialized B12. */
  sig12, ssig12, csig12, B12 : 0, E2 : 0, AB1 : 0,
  omg12, lam12, lon12,
  ssig2, csig2, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2, E],
  s12_a12 : bfloat(s12_a12),
  if (arcmode) then (
    /* Interpret s12_a12 as spherical arc length */
    sig12 : s12_a12 * degree,
    block([t:sincosdx(s12_a12)], ssig12:t[1], csig12:t[2]))
  else block([tau12 : s12_a12 / (l[l_b] *
      (if exact then l[l_E0] else (1 + l[l_A1m1]))),s,c],
    /* Interpret s12_a12 as distance */
    s : sin(tau12),
    c : cos(tau12),
    /* tau2 = tau1 + tau12 */
    if exact then (E2 : - deltaeinv(l[l_stau1] * c + l[l_ctau1] * s,
        l[l_ctau1] * c - l[l_stau1] * s,
        l[l_E][e_k2], l[l_E][e_ec]),
      sig12 : tau12 - (E2 - l[l_E1]), ssig12 : sin(sig12), csig12 : cos(sig12))
    else (B12 : - SinCosSeries(true,
        l[l_stau1] * c + l[l_ctau1] * s,
        l[l_ctau1] * c - l[l_stau1] * s,
        l[l_C1pa]),
      sig12 : tau12 - (B12 - l[l_B11]),
      ssig12 : sin(sig12), csig12 : cos(sig12),
      if abs(l[l_f]) > 0.01 then block(
        /* Reverted distance series is inaccurate for |f| > 1/100, so correct
        sig12 with 1 Newton iteration.  The following table shows the
        approximate maximum error for a = WGS_a() and various f relative to
        GeodesicExact.
            erri = the error in the inverse solution (nm)
            errd = the error in the direct solution (series only) (nm)
            errda = the error in the direct solution (series + 1 Newton) (nm)
              f     erri  errd errda
            -1/5    12e6 1.2e9  69e6
            -1/10  123e3  12e6 765e3
            -1/20   1110 108e3  7155
            -1/50  18.63 200.9 27.12
            -1/100 18.63 23.78 23.37
            -1/150 18.63 21.05 20.26
             1/150 22.35 24.73 25.83
             1/100 22.35 25.03 25.31
             1/50  29.80 231.9 30.44
             1/20   5376 146e3  10e3
             1/10  829e3  22e6 1.5e6
             1/5   157e6 3.8e9 280e6
        */
        [ssig2 : l[l_ssig1] * csig12 + l[l_csig1] * ssig12,
        csig2 : l[l_csig1] * csig12 - l[l_ssig1] * ssig12,
        serr],
        B12 : SinCosSeries(true, ssig2, csig2, l[l_C1a]),
        serr : (1 + l[l_A1m1]) * (sig12 + (B12 - l[l_B11])) - s12_a12 / l[l_b],
        sig12 : sig12 - serr / sqrt(1 + l[l_k2] * sq(ssig2)),
        ssig12 : sin(sig12), csig12 : cos(sig12)
        /* Update B12 below */
        ))),
  /* sig2 = sig1 + sig12 */
  ssig2 : l[l_ssig1] * csig12 + l[l_csig1] * ssig12,
  csig2 : l[l_csig1] * csig12 - l[l_ssig1] * ssig12,
  dn2 : sqrt(1 + l[l_k2] * sq(ssig2)),
  if exact then (if arcmode
    then E2 : deltae(ssig2, csig2, dn2, l[l_E][e_k2], l[l_E][e_ec]),
    AB1 : l[l_E0] * (E2 - l[l_E1]))
  else (if arcmode or abs(l[l_f]) > 0.01b0
    then B12 : SinCosSeries(true, ssig2, csig2, l[l_C1a]),
    AB1 : (1 + l[l_A1m1]) * (B12 - l[l_B11])),
  /* sin(bet2) = cos(alp0) * sin(sig2) */
  sbet2 : l[l_calp0] * ssig2,
  /* Alt: cbet2 = hypot(csig2, salp0 * ssig2); */
  cbet2 : hypotx(l[l_salp0], l[l_calp0] * csig2),
  if cbet2 = 0b0 then
  /* I.e., salp0 = 0, csig2 = 0.  Break the degeneracy in this case */
  cbet2 : csig2 : tiny,
  if not exact then (
    /* tan(omg2) = sin(alp0) * tan(sig2) */
    somg2 : l[l_salp0] * ssig2, comg2 : csig2),  /* No need to normalize */
  /* tan(alp0) = cos(sig2)*tan(alp2) */
  salp2 : l[l_salp0], calp2 : l[l_calp0] * csig2, /* No need to normalize */
  E : copysign(1b0, l[l_salp0]),
  if not exact then
  /* omg12 = omg2 - omg1 */
  omg12 : E * (sig12
    - (atan2(  ssig2, csig2) - atan2(  l[l_ssig1], l[l_csig1]))
    + (atan2(E*somg2, comg2) - atan2(E*l[l_somg1], l[l_comg1]))),
  s12 : if arcmode then l[l_b] *
  ((if exact then l[l_E0] else (1 + l[l_A1m1])) * sig12 + AB1) else s12_a12,
  if exact then block([somg2:l[l_salp0] * ssig2,
    comg2 : csig2, /* No need to normalize */
    cchi2],
    /* Without normalization we have schi2 = somg2. */
    cchi2 : l[l_f1] * dn2 *  comg2,
    lam12 : E * (sig12
      - (atan2(  ssig2, csig2) - atan2(  l[l_ssig1], l[l_csig1]))
      + (atan2(E*somg2, cchi2) - atan2(E*l[l_somg1], l[l_cchi1]))) -
    l[l_e2]/l[l_f1] * l[l_salp0] * l[l_H0] *
    (sig12 + deltah(ssig2, csig2, dn2,
        l[l_E][e_k2], l[l_E][e_alpha2], l[l_E][e_hc]) - l[l_H1] ) )
  else lam12 : omg12 + l[l_A3c] *
  ( sig12 + (SinCosSeries(true, ssig2, csig2, l[l_C3a]) - l[l_B31])),
  lon12 : lam12 / degree,
  /* Don't normalize lon2... */
  lon2 : l[l_lon1] + lon12,
  lat2 : atan2dx(sbet2, l[l_f1] * cbet2),
  azi2 : atan2dx(salp2, calp2),
  block([B22, AB2, J12],
    if exact then J12 : l[l_k2] * l[l_D0] *
    (sig12 + deltad(ssig2, csig2, dn2, l[l_E][e_k2], l[l_E][e_dc]) - l[l_D1])
    else ( B22 : SinCosSeries(true, ssig2, csig2, l[l_C2a]),
      AB2 : (1 + l[l_A2m1]) * (B22 - l[l_B21]),
      J12 : (l[l_A1m1] - l[l_A2m1]) * sig12 + (AB1 - AB2)),
    /* Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
    accurate cancellation in the case of coincident points. */
    m12 : l[l_b] * ((dn2 * (l[l_csig1] * ssig2) -
        l[l_dn1] * (l[l_ssig1] * csig2))
      - l[l_csig1] * csig2 * J12),
    block([t : l[l_k2] * (ssig2 - l[l_ssig1]) *
      (ssig2 + l[l_ssig1]) / (l[l_dn1] + dn2)],
      M12 : csig12 + (t *  ssig2 -  csig2 * J12) * l[l_ssig1] / l[l_dn1],
      M21 : csig12 - (t * l[l_ssig1] - l[l_csig1] * J12) *  ssig2 /  dn2)),
  block([ B42 : SinCosSeries(false, ssig2, csig2, l[l_C4a]), salp12, calp12],
    if l[l_calp0] = 0b0 or l[l_salp0] = 0b0 then (
      /* alp12 = alp2 - alp1, used in atan2 so no need to normalize */
      salp12 : salp2 * l[l_calp1] - calp2 * l[l_salp1],
      calp12 : calp2 * l[l_calp1] + salp2 * l[l_salp1])
    else (
      /* tan(alp) = tan(alp0) * sec(sig)
      tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
      = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
      If csig12 > 0, write
        csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
      else
        csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
      No need to normalize */
      salp12 : l[l_calp0] * l[l_salp0] *
      ( if csig12 <= 0b0 then l[l_csig1] * (1 - csig12) + ssig12 * l[l_ssig1]
        else ssig12 * (l[l_csig1] * ssig12 / (1 + csig12) + l[l_ssig1])),
      calp12 : sq(l[l_salp0]) + sq(l[l_calp0]) * l[l_csig1] * csig2),
    S12 : l[l_c2] * atan2(salp12, calp12) + l[l_A4] * (B42 - l[l_B41])),
  [if arcmode then s12_a12 else sig12 / degree,
  lat2, lon2, azi2, s12, m12, M12, M21, S12])$

geod_position(l, s12) := geod_genposition(l, false, s12)$

geod_gendirect(g, lat1, lon1, azi1, arcmode, s12_a12):=
block([l:geod_lineinit(g, lat1, lon1, azi1)],
  geod_genposition(l, arcmode, s12_a12))$

geod_direct(g, lat1, lon1, azi1, s12):=
  geod_gendirect(g, lat1, lon1, azi1, false, s12)$

/* Return [a12, s12, azi1, azi2, m12, M12, M21, S12] */
geod_geninverse(g, lat1, lon1, lat2, lon2):=block(
  [s12 : 0b0, azi1 : 0b0, azi2 : 0b0,
  m12 : 0b0, M12 : 0b0, M21 : 0b0, S12 : 0b0,
  lon12, lon12s, latsign, lonsign, swapp,
  sbet1, cbet1, sbet2, cbet2, s12x : 0b0, m12x : 0b0,
  dn1, dn2, lam12, slam12, clam12,
  a12 : 0b0, sig12, calp1 : 0b0, salp1 : 0b0, calp2 : 0b0, salp2 : 0b0,
  meridian,  omg12 : 0b0, somg12 : 2b0, comg12,
  /* Initialize for the meridian.  No longitude calculation is done in this
  case to let the parameter default to 0. */
  E : Ef(-g[g_ep2],  0b0)],
  lat1:bfloat(lat1),lon1:bfloat(lon1),
  lat2:bfloat(lat2),lon2:bfloat(lon2),
  /* Compute longitude difference (AngDiff does this carefully).  Result is
  in [-180, 180] but -180 is only for west-going geodesics.  180 is for
  east-going and meridional geodesics. */
  lon12 : AngDiff(lon1, lon2), lon12s:lon12[2], lon12:lon12[1],
  /* Make longitude difference positive. */
  lonsign : if lon12 >= 0b0 then 1 else -1,
  /* If very close to being on the same half-meridian, then make it so. */
  lon12 : lonsign * AngRound(lon12),
  lon12s : AngRound((180 - lon12) - lonsign * lon12s),
  lam12 : lon12 * degree,
  if lon12 > 90 then block([t:sincosdx(lon12s)], slam12:t[1], clam12:-t[2])
  else block([t:sincosdx(lon12)], slam12:t[1], clam12:t[2]),
  /* If really close to the equator, treat as on equator. */
  lat1 : AngRound(lat1),
  lat2 : AngRound(lat2),
  /* Swap points so that point with higher (abs) latitude is point 1 */
  swapp : if abs(lat1) >= abs(lat2) then 1 else -1,
  if swapp < 0 then (lonsign : -lonsign,
    block([t:swapx(lat1, lat2)], lat1:t[1], lat2:t[2])),
  /* Make lat1 <= 0 */
  latsign : if lat1 < 0b0 then 1 else -1,
  lat1 : lat1 * latsign,
  lat2 : lat2 * latsign,
  /* Now we have
      0 <= lon12 <= 180
      -90 <= lat1 <= 0
      lat1 <= lat2 <= -lat1
  longsign, swapp, latsign register the transformation to bring the
  coordinates to this canonical form.  In all cases, 1 means no change was
  made.  We make these transformations so that there are few cases to
  check, e.g., on verifying quadrants in atan2.  In addition, this
  enforces some symmetries in the results returned. */
  block([t:sincosdx(lat1)], sbet1:t[1], cbet1:t[2]), sbet1 : g[g_f1] * sbet1,
  block([t:norm2(sbet1, cbet1)], sbet1:t[1], cbet1:t[2]),
  /* Ensure cbet1 = +epsilon at poles */
  cbet1 = max(tiny, cbet1),
  block([t:sincosdx(lat2)], sbet2:t[1], cbet2:t[2]), sbet2 : g[g_f1] * sbet2,
  block([t:norm2(sbet2, cbet2)], sbet2:t[1], cbet2:t[2]),
  /* Ensure cbet2 = +epsilon at poles */
  cbet2 = max(tiny, cbet2),
  /* If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
  |bet1| - |bet2|.  Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
  a better measure.  This logic is used in assigning calp2 in Lambda12.
  Sometimes these quantities vanish and in that case we force bet2 = +/-
  bet1 exactly.  An example where is is necessary is the inverse problem
  48.522876735459 0 -48.52287673545898293 179.599720456223079643
  which failed with Visual Studio 10 (Release and Debug) */
  if cbet1 < -sbet1 then
  ( if cbet2 = cbet1 then sbet2 : if sbet2 < 0b0 then sbet1 else -sbet1 )
  else (    if abs(sbet2) = -sbet1 then cbet2 : cbet1 ),
  dn1 : sqrt(1 + g[g_ep2] * sq(sbet1)),
  dn2 : sqrt(1 + g[g_ep2] * sq(sbet2)),
  meridian : is(lat1 = -90b0 or slam12 = 0b0),
  if meridian then block(
    /* Endpoints are on a single full meridian, so the geodesic might lie on
    a meridian. */
    [ ssig1, csig1, ssig2, csig2],
    calp1 : clam12, salp1 : slam12, /* Head to the target longitude */
    calp2 : 1b0, salp2 : 0b0,           /* At the target we're heading north */
    /* tan(bet) : tan(sig) * cos(alp) */
    ssig1 : sbet1, csig1 : calp1 * cbet1,
    ssig2 : sbet2, csig2 : calp2 * cbet2,
    /* sig12 = sig2 - sig1 */
    sig12 : atan2(0b0 + max(0b0, csig1 * ssig2 - ssig1 * csig2),
      csig1 * csig2 + ssig1 * ssig2),
    block([r],
      r:Lengths(g, g[g_n], E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
        cbet1, cbet2),
      s12x:r[1], m12x:r[2], M12:r[4], M21:r[5]),
    /* Add the check for sig12 since zero length geodesics might yield m12 <
    0.  Test case was
       echo 20.001 0 20.001 0 | GeodTest -i
    In fact, we will have sig12 > pi/2 for meridional geodesic which is
    not a shortest path. */
    if sig12 < 1b0 or m12x >= 0b0 then (
      if sig12 < 3 * tiny then sig12 : m12x : s12x : 0b0,
      m12x : m12x * g[g_b],
      s12x : s12x * g[g_b],
      a12 : sig12 / degree )
    else
    /* m12 < 0, i.e., prolate and too close to anti-podal */
    meridian : false ),
  if not meridian and
  sbet1 = 0b0 and           /* and sbet2 == 0 */
  /* Mimic the way Lambda12 works with calp1 = 0 */
  (g[g_f] <= 0b0 or lon12s >= g[g_f] * 180) then (
    /* Geodesic runs along equator */
    calp1 : calp2 : 0b0, salp1 : salp2 : 1b0,
    s12x : g[g_a] * lam12,
    sig12 : omg12 : lam12 / g[g_f1],
    m12x : g[g_b] * sin(sig12),
    M12 : M21 : cos(sig12),
    a12 : lon12 / g[g_f1] )
  else if not meridian then block([dnm],
    /* Now point1 and point2 belong within a hemisphere bounded by a
    meridian and geodesic is neither meridional or equatorial.
    Figure a starting point for Newton's method */
    block([r],
      r : InverseStart(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2,
      lam12, slam12, clam12),
      sig12:r[1], salp1:r[2], calp1:r[3], salp2:r[4], calp2:r[5],
      dnm:r[6]),
    if sig12 >= 0b0 then (
      /* Short lines (InverseStart sets salp2, calp2, dnm) */
      s12x : sig12 * g[g_b] * dnm,
      m12x : sq(dnm) * g[g_b] * sin(sig12 / dnm),
      M12 : M21 : cos(sig12 / dnm),
      a12 : sig12 / degree,
      omg12 : lam12 / (g[g_f1] * dnm))
    else block(
      /* Newton's method.  This is a straightforward solution of f(alp1) =
      lambda12(alp1) - lam12 = 0 with one wrinkle.  f(alp) has exactly one
      root in the interval (0, pi) and its derivative is positive at the
      root.  Thus f(alp) is positive for alp > alp1 and negative for alp <
      alp1.  During the course of the iteration, a range (alp1a, alp1b) is
      maintained which brackets the root and with each evaluation of
      f(alp) the range is shrunk, if possible.  Newton's method is
      restarted whenever the derivative of f is negative (because the new
      value of alp1 is then further from the solution) or if the new
      estimate of alp1 lies outside (0,pi); in this case, the new starting
      guess is taken to be (alp1a + alp1b) / 2. */
      [ssig1 : 0b0, csig1 : 0b0, ssig2 : 0b0, csig2 : 0b0, eps : 0b0,
      domg12 : 0b0, numit : 0,
      /* Bracketing range */
      salp1a : tiny, calp1a : 1b0, salp1b : tiny, calp1b : -1b0,
      tripn : false, tripb : false, contflag, dv, v],
      for i:0 thru maxit2-1 do (
        contflag:false,
        numit:i,
        /* the WGS84 test set: mean : 1.47, sd = 1.25, max = 16
        WGS84 and random input: mean = 2.85, sd = 0.60 */
        block([r],
          r : Lambda12(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
            slam12, clam12, is(numit < maxit1)),
          v : r[1],
          salp2:r[2], calp2:r[3], sig12:r[4],
          ssig1:r[5], csig1:r[6], ssig2:r[7], csig2:r[8],
          if exact then E:r[9] else eps:r[9], domg12:r[10],
          dv:r[11]),
        /* 2 * tol0 is approximately 1 ulp for a number in [0, pi]. */
        /* Reversed test to allow escape with NaNs */
        if tripb or not(abs(v) >= (if tripn then 8 else 1) * tol0) then
        return(true),
        /* Update bracketing values */
        if v > 0b0 and (numit > maxit1 or calp1/salp1 > calp1b/salp1b)
        then ( salp1b : salp1, calp1b : calp1 )
        else if v < 0b0 and (numit > maxit1 or calp1/salp1 < calp1a/salp1a)
        then ( salp1a : salp1, calp1a : calp1 ),
        if numit < maxit1 and dv > 0b0 then block(
          [dalp1, sdalp1, cdalp1,nsalp1],
          dalp1 : -v/dv,
          sdalp1 : sin(dalp1), cdalp1 : cos(dalp1),
          nsalp1 : salp1 * cdalp1 + calp1 * sdalp1,
          if nsalp1 > 0b0 and abs(dalp1) < pi then (
            calp1 : calp1 * cdalp1 - salp1 * sdalp1,
            salp1 : nsalp1,
            block([t:norm2(salp1, calp1)], salp1:t[1], calp1:t[2]),
            /* In some regimes we don't get quadratic convergence because
            slope -> 0.  So use convergence conditions based on epsilon
            instead of sqrt(epsilon). */
            tripn : is(abs(v) <= 16 * tol0),
            contflag:true ) ),
        if not contflag then (
          /* Either dv was not positive or updated value was outside legal
          range.  Use the midpoint of the bracket as the next estimate.
          This mechanism is not needed for the WGS84 ellipsoid, but it does
          catch problems with more eccentric ellipsoids.  Its efficacy is
          such for the WGS84 test set with the starting guess set to alp1 =
          90deg:
          the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
          WGS84 and random input: mean = 4.74, sd = 0.99 */
          salp1 : (salp1a + salp1b)/2,
          calp1 : (calp1a + calp1b)/2,
          block([t:norm2(salp1, calp1)], salp1:t[1], calp1:t[2]),
          tripn : false,
          tripb : is(abs(salp1a - salp1) + (calp1a - calp1) < tolb or
            abs(salp1 - salp1b) + (calp1 - calp1b) < tolb)) ),
      block([r],
        r:Lengths(g, eps, E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
          cbet1, cbet2),
        s12x:r[1], m12x:r[2], M12:r[4], M21:r[5]),
      m12x : m12x * g[g_b],
      s12x : s12x * g[g_b],
      a12 : sig12 / degree,
      block([sdomg12 : sin(domg12), cdomg12 : cos(domg12)],
        somg12 : slam12 * cdomg12 - clam12 * sdomg12,
        comg12 : clam12 * cdomg12 + slam12 * sdomg12) ) ),
  s12 : 0b0 + s12x,           /* Convert -0 to 0 */
  m12 : 0b0 + m12x,           /* Convert -0 to 0 */
  block(
    /* From Lambda12: sin(alp1) * cos(bet1) = sin(alp0) */
    [ salp0 : salp1 * cbet1,
    calp0 : hypotx(calp1, salp1 * sbet1), /* calp0 > 0 */
    alp12],
    if calp0 # 0b0 and salp0 # 0b0 then block(
      /* From Lambda12: tan(bet) = tan(sig) * cos(alp) */
      [ssig1 : sbet1, csig1 : calp1 * cbet1,
      ssig2 : sbet2, csig2 : calp2 * cbet2,
      k2 : sq(calp0) * g[g_ep2], eps,
      /* Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0). */
      A4 : sq(g[g_a]) * calp0 * salp0 * g[g_e2],
      Ca, B41, B42],
      eps : k2 / (2 * (1 + sqrt(1 + k2)) + k2),
      block([t:norm2(ssig1, csig1)], ssig1:t[1], csig1:t[2]),
      block([t:norm2(ssig2, csig2)], ssig2:t[1], csig2:t[2]),
      Ca : C4f(g, eps),
      B41 : SinCosSeries(false, ssig1, csig1, Ca),
      B42 : SinCosSeries(false, ssig2, csig2, Ca),
      S12 : A4 * (B42 - B41))
    else S12 : 0, /* Avoid problems with indeterminate sig1, sig2 on equator */
    if not meridian and somg12 > 1 then
      (somg12 : sin(omg12), comg12 : cos(omg12)),
    if not meridian and
    /* omg12 < 3/4 * pi */
    comg12 > -0.7071b0 and   /* Long difference not too big */
    sbet2 - sbet1 < 1.75b0 then block( /* Lat difference not too big */
      /* Use tan(Gamma/2) = tan(omg12/2)
      * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
      with tan(x/2) = sin(x)/(1+cos(x)) */
      [domg12 : 1 + comg12, dbet1 : 1 + cbet1, dbet2 : 1 + cbet2],
      alp12 : 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
        domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) ))
    else block(
      /* alp12 = alp2 - alp1, used in atan2 so no need to normalize */
      [salp12 : salp2 * calp1 - calp2 * salp1,
      calp12 : calp2 * calp1 + salp2 * salp1],
      /* The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
      salp12 = -0 and alp12 = -180.  However this depends on the sign
      being attached to 0 correctly.  The following ensures the correct
      behavior. */
      if salp12 = 0b0 and calp12 < 0b0 then (
        salp12 : tiny * calp1,
        calp12 : -1b0),
      alp12 : atan2(salp12, calp12) ),
    S12 : S12 + g[g_c2] * alp12,
    S12 : S12 * swapp * lonsign * latsign,
    /* Convert -0 to 0 */
    S12 : S12 + 0b0 ),
  /* Convert calp, salp to azimuth accounting for lonsign, swapp, latsign. */
  if swapp < 0 then (
    block([t:swapx(salp1, salp2)], salp1:t[1], salp2:t[2]),
    block([t:swapx(calp1, calp2)], calp1:t[1], calp2:t[2]),
    block([t:swapx(M12, M21)], M12:t[1], M21:t[2])),
  salp1 : salp1 * swapp * lonsign, calp1 : calp1 * swapp * latsign,
  salp2 : salp2 * swapp * lonsign, calp2 : calp2 * swapp * latsign,
  azi1 : atan2dx(salp1, calp1),
  azi2 : atan2dx(salp2, calp2),
  [a12, s12, azi1, azi2, m12, M12, M21, S12]
)$

geod_inverse(g, lat1, lon1, lat2, lon2):=
geod_geninverse(g, lat1, lon1, lat2, lon2)$

SinCosSeries(sinp, sinx, cosx, c):=block([n:length(c), ar, y0, y1, n2, k],
  /* Evaluate
  y = sinp ? sum(c[i] * sin( 2*i    * x), i, 1, n) :
             sum(c[i] * cos((2*i-1) * x), i, 1, n)
  using Clenshaw summation.  where n = length(c)
  Approx operation count = (n + 5) mult and (2 * n + 2) add */
  /* 2 * cos(2 * x) */
  ar : 2 * (cosx - sinx) * (cosx + sinx),
  /* accumulators for sum */
  if mod(n, 2)=1 then (y0 : c[n], n2 : n - 1)
  else (y0 : 0b0, n2 : n),
  y1 : 0b0,
  /* Now n2 is even */
  for k : n2 thru 1 step -2 do (
    /* Unroll loop x 2, so accumulators return to their original role */
    y1 : ar * y0 - y1 + c[k],
    y0 : ar * y1 - y0 + c[k-1]),
  if sinp then 2 * sinx * cosx * y0 /* sin(2 * x) * y0 */
  else cosx * (y0 - y1) /* cos(x) * (y0 - y1) */
  )$

/* Return [s12b, m12b, m0, M12, M21] */
Lengths(g, eps, E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2):=
block([Ca,
  s12b : 0b0, m12b : 0b0, m0 : 0b0, M12 : 0b0, M21 : 0b0,
  A1m1, AB1, A2m1, AB2, J12],
  /* Return m12b = (reduced length)/b; also calculate s12b = distance/b,
  and m0 = coefficient of secular term in expression for reduced length. */
  if exact then (
    m0 : - E[e_k2] * E[e_dc] / (pi/2),
    J12 : m0 *
      (sig12 + deltad(ssig2, csig2, dn2, E[e_k2], E[e_dc])
      - deltad(ssig1, csig1, dn1, E[e_k2], E[e_dc])) )
  else (
    A1m1 : A1m1f(eps), Ca : C1f(eps),
    AB1 : (1 + A1m1) * (SinCosSeries(true, ssig2, csig2, Ca) -
      SinCosSeries(true, ssig1, csig1, Ca)),
    A2m1 : A2m1f(eps), Ca : C2f(eps),
    AB2 : (1 + A2m1) * (SinCosSeries(true, ssig2, csig2, Ca) -
      SinCosSeries(true, ssig1, csig1, Ca)),
    m0 : A1m1 - A2m1,
    J12 : m0 * sig12 + (AB1 - AB2)),
  /* Missing a factor of b.
  Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure accurate
  cancellation in the case of coincident points. */
  m12b : dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) - csig1 * csig2 * J12,
  /* Missing a factor of b */
  s12b : if exact then
  E[e_ec] / (pi/2) *
  (sig12 + deltae(ssig2, csig2, dn2, E[e_k2], E[e_ec])
  - deltae(ssig1, csig1, dn1, E[e_k2], E[e_ec]))
  else (1 + A1m1) * sig12 + AB1,
  block([csig12 : csig1 * csig2 + ssig1 * ssig2,
    t : g[g_ep2] * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2)],
    M12 : csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1,
    M21 : csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2 ),
  [s12b, m12b, m0, M12, M21])$

Astroid(x, y):= block(
  /* Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
  This solution is adapted from Geocentric::Reverse. */
  [k, p : sq(x), q : sq(y), r],
  r : (p + q - 1) / 6,
  if not(q = 0b0 and r <= 0b0) then block(
    /* Avoid possible division by zero when r = 0 by multiplying equations
    for s and t by r^3 and r, resp. */
    [S : p * q / 4,            /* S = r^3 * s */
    r2 : sq(r),
    r3, disc, u, v, uv, w],
    r3 : r * r2,
    /* The discriminant of the quadratic equation for T3.  This is zero on
    the evolute curve p^(1/3)+q^(1/3) = 1 */
    disc : S * (S + 2 * r3),
    u : r,
    v, uv, w,
    if disc >= 0b0 then block([T3 : S + r3, T],
      /* Pick the sign on the sqrt to maximize abs(T3).  This minimizes loss
      of precision due to cancellation.  The result is unchanged because
      of the way the T is used in definition of u. */
      /* T3 = (r * t)^3 */
      T3 : T3 + (if T3 < 0b0 then -sqrt(disc) else sqrt(disc)),
      /* N.B. cbrtx always returns the real root.  cbrtx(-8) = -2. */
      T : cbrtx(T3),            /* T = r * t */
      /* T can be zero, but then r2 / T -> 0. */
      u : u + T + (if T # 0b0 then r2 / T else 0b0))
    else block(
      /* T is complex, but the way u is defined the result is real. */
      [ang : atan2(sqrt(-disc), -(S + r3))],
      /* There are three possible cube roots.  We choose the root which
      avoids cancellation.  Note that disc < 0 implies that r < 0. */
      u : u + 2 * r * cos(ang / 3)),
    v : sqrt(sq(u) + q),              /* guaranteed positive */
    /* Avoid loss of accuracy when u < 0. */
    uv : if u < 0b0 then q / (v - u) else u + v, /* u+v, guaranteed positive */
    w : (uv - q) / (2 * v),           /* positive? */
    /* Rearrange expression for k to avoid loss of accuracy due to
    subtraction.  Division by 0 not possible because uv > 0, w >= 0. */
    k : uv / (sqrt(uv + sq(w)) + w))   /* guaranteed positive */
  else                /* q == 0 && r <= 0 */
  /* y = 0 with |x| <= 1.  Handle this case directly.
  for y small, positive root is k = abs(y)/sqrt(1-x^2) */
  k : 0b0,
  k)$

/* Return [sig12, salp1, calp1, salp2, calp2, dnm] */
InverseStart(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2,
             lam12, slam12, clam12):=block(
  [ salp1 : 0b0, calp1 : 0b0, salp2 : 0b0, calp2 : 0b0, dnm : 0b0,
  /* Return a starting point for Newton's method in salp1 and calp1 (function
  value is -1).  If Newton's method doesn't need to be used, return also
  salp2 and calp2 and function value is sig12. */
  sig12 : -1b0,               /* Return value */
  /* bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0] */
  sbet12 : sbet2 * cbet1 - cbet2 * sbet1,
  cbet12 : cbet2 * cbet1 + sbet2 * sbet1,
  sbet12a : sbet2 * cbet1 + cbet2 * sbet1,
  shortline, somg12, comg12, ssig12, csig12, E:[]],
  shortline : is(cbet12 >= 0b0 and sbet12 < 0.5b0 and cbet2 * lam12 < 0.5b0),
  if shortline then block([sbetm2 : sq(sbet1 + sbet2), omg12],
    /* sin((bet1+bet2)/2)^2
     =  (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2) */
    sbetm2 : sbetm2 / (sbetm2 + sq(cbet1 + cbet2)),
    dnm : sqrt(1 + g[g_ep2] * sbetm2),
    omg12 : lam12 / (g[g_f1] * dnm),
    somg12 : sin(omg12), comg12 : cos(omg12))
  else (somg12 : slam12, comg12 : clam12),
  salp1 : cbet2 * somg12,
  calp1 : if comg12 >= 0b0
  then sbet12 + cbet2 * sbet1 * sq(somg12) / (1 + comg12)
  else sbet12a - cbet2 * sbet1 * sq(somg12) / (1 - comg12),
  ssig12 : hypotx(salp1, calp1),
  csig12 : sbet1 * sbet2 + cbet1 * cbet2 * comg12,
  if shortline and ssig12 < g[g_etol2] then (
    /* really short lines */
    salp2 : cbet1 * somg12,
    calp2 : sbet12 - cbet1 * sbet2 *
    (if comg12 >= 0 then sq(somg12) / (1 + comg12) else 1 - comg12),
    block([t:norm2(salp2, calp2)], salp2:t[1], calp2:t[2]),
    /* Set return value */
    sig12 : atan2(ssig12, csig12))
  else if abs(g[g_n]) > 0.1b0 or /* No astroid calc if too eccentric */
  csig12 >= 0 or
  ssig12 >= 6 * abs(g[g_n]) * pi * sq(cbet1) then true
  /* Nothing to do, zeroth order spherical approximation is OK */
  else block(
    /* Scale lam12 and bet2 to x, y coordinate system where antipodal point
    is at origin and singular point is at y = 0, x = -1. */
    [y, lamscale, betscale,x, lam12x],
    lam12x : atan2(-slam12, -clam12), /* lam12 - pi */
    if g[g_f] >= 0 then (            /* In fact f == 0 does not get here */
      /* x = dlong, y = dlat */
      if exact then block([k2 : sq(sbet1) * g[g_ep2]],
        E : Ef(-k2, -g[g_ep2]),
        lamscale : g[g_e2]/g[g_f1] * cbet1 * 2 * E[e_hc])
      else block([k2 : sq(sbet1) * g[g_ep2],eps],
        eps : k2 / (2 * (1 + sqrt(1 + k2)) + k2),
        lamscale : g[g_f] * cbet1 * A3f(g, eps) * pi),
      betscale : lamscale * cbet1,
      x : lam12x / lamscale,
      y : sbet12a / betscale)
    else block(                    /* f < 0 */
      /* x = dlat, y = dlong */
      [cbet12a : cbet2 * cbet1 - sbet2 * sbet1,bet12a,m12b, m0],
      bet12a : atan2(sbet12a, cbet12a),
      /* In the case of lon12 = 180, this repeats a calculation made in
      * Inverse. */
      block([r],
        r:Lengths(g, g[g_n], E, pi + bet12a,
          sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
          cbet1, cbet2),
        m12b:r[2], m0:r[3]),
      x : -1 + m12b / (cbet1 * cbet2 * m0 * pi),
      betscale : if x < -0.01b0 then sbet12a / x else
      -g[g_f] * sq(cbet1) * pi,
      lamscale : betscale / cbet1,
      y : lam12x / lamscale),
    if y > -tol1 and x > -1 - xthresh then (
      /* strip near cut */
      if g[g_f] >= 0b0 then (
        salp1 : min(1b0, -x), calp1 : - sqrt(1 - sq(salp1)))
      else (
        calp1 : max(if x > -tol1 then 0b0 else -1b0, x),
        salp1 : sqrt(1 - sq(calp1))))
    else block(
      /* Estimate alp1, by solving the astroid problem.
      Could estimate alpha1 = theta + pi/2, directly, i.e.,
        calp1 = y/k; salp1 = -x/(1+k);  for f >= 0
        calp1 = x/(1+k); salp1 = -y/k;  for f < 0 (need to check)
      However, it's better to estimate omg12 from astroid and use
      spherical formula to compute alp1.  This reduces the mean number of
      Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
      (min 0 max 5).  The changes in the number of iterations are as
      follows:
      change percent
         1       5
         0      78
        -1      16
        -2       0.6
        -3       0.04
        -4       0.002
      The histogram of iterations is (m = number of iterations estimating
      alp1 directly, n = number of iterations estimating via omg12, total
      number of trials = 148605):
       iter    m      n
         0   148    186
         1 13046  13845
         2 93315 102225
         3 36189  32341
         4  5396      7
         5   455      1
         6    56      0
      Because omg12 is near pi, estimate work with omg12a = pi - omg12 */
      [k : Astroid(x, y),omg12a],
      omg12a : lamscale *
      ( if g[g_f] >= 0b0 then -x * k/(1 + k) else -y * (1 + k)/k ),
      somg12 : sin(omg12a), comg12 : -cos(omg12a),
      /* Update spherical estimate of alp1 using omg12 instead of lam12 */
      salp1 : cbet2 * somg12,
      calp1 : sbet12a - cbet2 * sbet1 * sq(somg12) / (1 - comg12))),
  if salp1 > 0 then              /* Sanity check on starting guess */
  block([t:norm2(salp1, calp1)], salp1:t[1], calp1:t[2])
  else ( salp1 : 1b0, calp1 : 0b0 ),
  [sig12, salp1, calp1, salp2, calp2, dnm]
  )$

/* Return [lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
(E or eps), domg12, dlam12]
*/
Lambda12(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
         slam120, clam120, diffp):=
block([salp2 : 0b0, calp2 : 0b0, sig12 : 0b0,
  ssig1 : 0b0, csig1 : 0b0, ssig2 : 0b0, csig2 : 0b0, eps : 0b0, E : [],
  domg12 : 0b0, somg12 : 0b0, comg12 : 0b0, dlam12 : 0b0,
  salp0, calp0,
  somg1, comg1, somg2, comg2, cchi1, cchi2, lam12,
  B312, k2, Ca, eta],
  if sbet1 = 0b0 and calp1 = 0b0 then
  /* Break degeneracy of equatorial line.  This case has already been
  handled. */
  calp1 : -tiny,
  /* sin(alp1) * cos(bet1) = sin(alp0) */
  salp0 : salp1 * cbet1,
  calp0 : hypotx(calp1, salp1 * sbet1), /* calp0 > 0 */
  /* tan(bet1) = tan(sig1) * cos(alp1)
  tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1) */
  ssig1 : sbet1, somg1 : salp0 * sbet1,
  csig1 : comg1 : calp1 * cbet1,
  /* Without normalization we have schi1 = somg1. */
  if exact then cchi1 : g[g_f1] * dn1 * comg1,
  block([t:norm2(ssig1, csig1)], ssig1:t[1], csig1:t[2]),
  /* norm2 (&somg1, &comg1); -- don't need to normalize! */
  /* Enforce symmetries in the case abs(bet2) = -bet1.  Need to be careful
  about this case, since this can yield singularities in the Newton
  iteration.
  sin(alp2) * cos(bet2) = sin(alp0) */
  salp2 : if cbet2 # cbet1 then salp0 / cbet2 else salp1,
  /* calp2 = sqrt(1 - sq(salp2))
         = sqrt(sq(calp0) - sq(sbet2)) / cbet2
  and subst for calp0 and rearrange to give; choose positive sqrt
  to give alp2 in [0, pi/2]. */
  calp2 : if cbet2 # cbet1 or abs(sbet2) # -sbet1 then
  sqrt(sq(calp1 * cbet1) +
    (if cbet1 < -sbet1 then
      (cbet2 - cbet1) * (cbet1 + cbet2) else
      (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 else
  abs(calp1),
  /* tan(bet2) = tan(sig2) * cos(alp2)
  tan(omg2) = sin(alp0) * tan(sig2). */
  ssig2 : sbet2, somg2 : salp0 * sbet2,
  csig2 : comg2 : calp2 * cbet2,
  /* Without normalization we have schi2 = somg2. */
  if exact then cchi2 : g[g_f1] * dn2 * comg2,
  block([t:norm2(ssig2, csig2)], ssig2:t[1], csig2:t[2]),
  /* norm2(&somg2, &comg2); -- don't need to normalize! */
  /* sig12 = sig2 - sig1, limit to [0, pi] */
  sig12 : atan2(0b0 + max(0b0, csig1 * ssig2 - ssig1 * csig2),
    csig1 * csig2 + ssig1 * ssig2),
  /* omg12 = omg2 - omg1, limit to [0, pi] */
  somg12 : 0b0 + max(0b0, comg1 * somg2 - somg1 * comg2),
  comg12 :                comg1 * comg2 + somg1 * somg2,
  k2 : sq(calp0) * g[g_ep2],
  if exact then block([schi12, cchi12, deta12],
    E : Ef(-k2, -g[g_ep2]),
    schi12 : 0b0 + max(0b0, cchi1 * somg2 - somg1 * cchi2),
    cchi12 :                cchi1 * cchi2 + somg1 * somg2,
    /* eta = chi12 - lam120 */
    eta : atan2(schi12 * clam120 - cchi12 * slam120,
                cchi12 * clam120 + schi12 * slam120),
    deta12 : -g[g_e2]/g[g_f1] * salp0 * E[e_hc] / (pi/2) *
      (sig12 + deltah(ssig2, csig2, dn2, E[e_k2], E[e_alpha2], E[e_hc]) -
       deltah(ssig1, csig1, dn1, E[e_k2], E[e_alpha2], E[e_hc]) ),
    lam12 : eta + deta12,
    domg12 : deta12 + atan2(schi12 * comg12 - cchi12 * somg12,
                            cchi12 * comg12 + schi12 * somg12))
  else ( /* eta = omg12 - lam120 */
    eta : atan2(somg12 * clam120 - comg12 * slam120,
                comg12 * clam120 + somg12 * slam120),
    eps : k2 / (2 * (1 + sqrt(1 + k2)) + k2),
    Ca : C3f(g, eps),
    B312 : (SinCosSeries(true, ssig2, csig2, Ca) -
      SinCosSeries(true, ssig1, csig1, Ca)),
    domg12 : -g[g_f] * A3f(g, eps) * salp0 * (sig12 + B312),
    lam12 : eta + domg12),
  if diffp then (
    if calp2 = 0b0 then
    dlam12 : - 2 * g[g_f1] * dn1 / sbet1
    else (block([r],
        r:Lengths(g, eps, E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
          cbet1, cbet2),
        dlam12:r[2]),
      dlam12 : dlam12 * g[g_f1] / (calp2 * cbet2))),
  [lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
  if exact then E else eps, domg12, dlam12])$

A3f(g, eps):=block(
  /* Evaluate sum(A3x[k] * eps^k, k, 0, nA3x-1) by Horner's method */
  [v : 0b0],
  for i:nA3x step -1 thru 1 do
  v : eps * v + g[g_A3x][i],
  v)$

C3f(g, eps):=block(
  /* Evaluate C3 coeffs by Horner's method
  * Elements c[1] thru c[nC3 - 1] are set */
  [i, j, k, mult : 1b0, c : makelist(0, i, 1, nC3-1)],
  j : nC3x,
  for k : nC3-1 step -1 thru 1 do block(
    [t : 0b0],
    for i : nC3 - k step -1 thru 1 do (
      t : eps * t + g[g_C3x][j],
      j : j - 1),
    c[k] : t),
  for k:1 thru nC3-1 do (
    mult : mult * eps,
    c[k] : c[k] * mult),
  c)$

C4f(g, eps):=block(
  /* Evaluate C4 coeffs by Horner's method
  * Elements c[1] thru c[nC4] are set */
  [i, j, k, mult : 1b0, c : makelist(0, i, 1, nC4)],
  j : nC4x,
  for k : nC4-1 step -1 thru 0 do block(
    [t : 0b0],
    for i : nC4 - k step -1 thru 1 do (
      t : eps * t + g[g_C4x][j],
      j : j - 1),
    c[k+1] : t),
  for k : 2 thru nC4 do (
    mult : mult * eps,
    c[k] : c[k] * mult),
  c)$

transit(lon1, lon2):=block([lon12],
  /* Return 1 or -1 if crossing prime meridian in east or west direction.
  Otherwise return zero. */
  /* Compute lon12 the same way as Geodesic::Inverse. */
  lon1 : AngNormalize(lon1),
  lon2 : AngNormalize(lon2),
  lon12 : AngDiff(lon1, lon2)[1],
  if lon1 <= 0b0 and lon2 > 0b0 and lon12 > 0b0 then 1 else
  (if lon2 <= 0b0 and lon1 > 0b0 and lon12 < 0b0 then -1 else 0))$

/* Return [P, A, mins, maxs] */
geod_polygonarea(g, points) := block([n:length(points), crossings : 0,
  area0 : 4 * pi * g[g_c2], A : 0, P : 0, mins : g[g_a] * 100, maxs : 0b0],
  for i : 1 thru n do block(
    [ s12, S12, r ],
    r:geod_geninverse(g,
      points[i][1], points[i][2],
      points[mod(i,n)+1][1], points[mod(i,n)+1][2]),
    s12:r[2], S12:r[8],
    if s12 > maxs then maxs:s12,
    if s12 < mins then mins:s12,
    P : P + s12,
    /* The minus sign is due to the counter-clockwise convention */
    A : A - S12,
    crossings : crossings + transit(points[i][2], points[mod(i,n)+1][2])),
  A : mod(A+area0/2, area0) - area0/2,
  if mod(crossings, 2) = 1 then
  A : A + (if A < 0b0 then 1 else -1) * area0/2,
  /* Put area in (-area0/2, area0/2] */
  if A > area0/2 then
  A : A - area0
  else if A <= -area0/2 then
  A : A + area0,
  [P, A, mins, maxs])$

wgs84:geod_init(6378137b0, 1/298.257223563b0)$

flat(a, GM, omega, J2):=block(
  [e2:3*J2, K : 2 * (a*omega)^2 * a / (15 * GM), e2a, q0],
  for j:0 thru 100 do (
    e2a:e2,q0:qf(e2/(1-e2)),
    e2:3*J2+K*e2*sqrt(e2)/q0,
    if e2 = e2a then return(done)),
  e2/(1+sqrt(1-e2)))$
qf(ep2):=block([ep,fpprec:3*fpprec],ep:sqrt(ep2),
  ((1 + 3/ep2) * atan(ep) - 3/ep)/2)$
/* 1/298.257222100882711243162836607614495 */
fgrs80:flat(6378137b0, 3986005b8, 7292115b-11, 108263b-8)$
grs80:geod_init(6378137b0, fgrs80)$