TriangularMatrixMatrix.h 16.3 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_TRIANGULAR_MATRIX_MATRIX_H
#define EIGEN_TRIANGULAR_MATRIX_MATRIX_H

namespace internal {

// template<typename Scalar, int mr, int StorageOrder, bool Conjugate, int Mode>
// struct gemm_pack_lhs_triangular
// {
//   Matrix<Scalar,mr,mr,
//   void operator()(Scalar* blockA, const EIGEN_RESTRICT Scalar* _lhs, int lhsStride, int depth, int rows)
//   {
//     conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
//     const_blas_data_mapper<Scalar, StorageOrder> lhs(_lhs,lhsStride);
//     int count = 0;
//     const int peeled_mc = (rows/mr)*mr;
//     for(int i=0; i<peeled_mc; i+=mr)
//     {
//       for(int k=0; k<depth; k++)
//         for(int w=0; w<mr; w++)
//           blockA[count++] = cj(lhs(i+w, k));
//     }
//     for(int i=peeled_mc; i<rows; i++)
//     {
//       for(int k=0; k<depth; k++)
//         blockA[count++] = cj(lhs(i, k));
//     }
//   }
// };

/* Optimized triangular matrix * matrix (_TRMM++) product built on top of
 * the general matrix matrix product.
 */
template <typename Scalar, typename Index,
          int Mode, bool LhsIsTriangular,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs,
          int ResStorageOrder>
struct product_triangular_matrix_matrix;

template <typename Scalar, typename Index,
          int Mode, bool LhsIsTriangular,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs>
struct product_triangular_matrix_matrix<Scalar,Index,Mode,LhsIsTriangular,
                                           LhsStorageOrder,ConjugateLhs,
                                           RhsStorageOrder,ConjugateRhs,RowMajor>
{
  static EIGEN_STRONG_INLINE void run(
    Index rows, Index cols, Index depth,
    const Scalar* lhs, Index lhsStride,
    const Scalar* rhs, Index rhsStride,
    Scalar* res,       Index resStride,
    Scalar alpha)
  {
    product_triangular_matrix_matrix<Scalar, Index,
      (Mode&(UnitDiag|ZeroDiag)) | ((Mode&Upper) ? Lower : Upper),
      (!LhsIsTriangular),
      RhsStorageOrder==RowMajor ? ColMajor : RowMajor,
      ConjugateRhs,
      LhsStorageOrder==RowMajor ? ColMajor : RowMajor,
      ConjugateLhs,
      ColMajor>
      ::run(cols, rows, depth, rhs, rhsStride, lhs, lhsStride, res, resStride, alpha);
  }
};

// implements col-major += alpha * op(triangular) * op(general)
template <typename Scalar, typename Index, int Mode,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs>
struct product_triangular_matrix_matrix<Scalar,Index,Mode,true,
                                           LhsStorageOrder,ConjugateLhs,
                                           RhsStorageOrder,ConjugateRhs,ColMajor>
{
  
  typedef gebp_traits<Scalar,Scalar> Traits;
  enum {
    SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
    IsLower = (Mode&Lower) == Lower,
    SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1
  };

  static EIGEN_DONT_INLINE void run(
    Index _rows, Index _cols, Index _depth,
    const Scalar* _lhs, Index lhsStride,
    const Scalar* _rhs, Index rhsStride,
    Scalar* res,        Index resStride,
    Scalar alpha)
  {
    // strip zeros
    Index diagSize  = std::min(_rows,_depth);
    Index rows      = IsLower ? _rows : diagSize;
    Index depth     = IsLower ? diagSize : _depth;
    Index cols      = _cols;
    
    const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
    const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);

    Index kc = depth; // cache block size along the K direction
    Index mc = rows;  // cache block size along the M direction
    Index nc = cols;  // cache block size along the N direction
    computeProductBlockingSizes<Scalar,Scalar,4>(kc, mc, nc);
    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
    std::size_t sizeB = sizeW + kc*cols;
    ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
    ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);    
    Scalar* blockB = allocatedBlockB + sizeW;

    Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,LhsStorageOrder> triangularBuffer;
    triangularBuffer.setZero();
    if((Mode&ZeroDiag)==ZeroDiag)
      triangularBuffer.diagonal().setZero();
    else
      triangularBuffer.diagonal().setOnes();

    gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
    gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
    gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;

    for(Index k2=IsLower ? depth : 0;
        IsLower ? k2>0 : k2<depth;
        IsLower ? k2-=kc : k2+=kc)
    {
      Index actual_kc = std::min(IsLower ? k2 : depth-k2, kc);
      Index actual_k2 = IsLower ? k2-actual_kc : k2;

      // align blocks with the end of the triangular part for trapezoidal lhs
      if((!IsLower)&&(k2<rows)&&(k2+actual_kc>rows))
      {
        actual_kc = rows-k2;
        k2 = k2+actual_kc-kc;
      }

      pack_rhs(blockB, &rhs(actual_k2,0), rhsStride, actual_kc, cols);

      // the selected lhs's panel has to be split in three different parts:
      //  1 - the part which is zero => skip it
      //  2 - the diagonal block => special kernel
      //  3 - the dense panel below (lower case) or above (upper case) the diagonal block => GEPP

      // the block diagonal, if any:
      if(IsLower || actual_k2<rows)
      {
        // for each small vertical panels of lhs
        for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
        {
          Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
          Index lengthTarget = IsLower ? actual_kc-k1-actualPanelWidth : k1;
          Index startBlock   = actual_k2+k1;
          Index blockBOffset = k1;

          // => GEBP with the micro triangular block
          // The trick is to pack this micro block while filling the opposite triangular part with zeros.
          // To this end we do an extra triangular copy to a small temporary buffer
          for (Index k=0;k<actualPanelWidth;++k)
          {
            if (SetDiag)
              triangularBuffer.coeffRef(k,k) = lhs(startBlock+k,startBlock+k);
            for (Index i=IsLower ? k+1 : 0; IsLower ? i<actualPanelWidth : i<k; ++i)
              triangularBuffer.coeffRef(i,k) = lhs(startBlock+i,startBlock+k);
          }
          pack_lhs(blockA, triangularBuffer.data(), triangularBuffer.outerStride(), actualPanelWidth, actualPanelWidth);

          gebp_kernel(res+startBlock, resStride, blockA, blockB, actualPanelWidth, actualPanelWidth, cols, alpha,
                      actualPanelWidth, actual_kc, 0, blockBOffset);

          // GEBP with remaining micro panel
          if (lengthTarget>0)
          {
            Index startTarget  = IsLower ? actual_k2+k1+actualPanelWidth : actual_k2;

            pack_lhs(blockA, &lhs(startTarget,startBlock), lhsStride, actualPanelWidth, lengthTarget);

            gebp_kernel(res+startTarget, resStride, blockA, blockB, lengthTarget, actualPanelWidth, cols, alpha,
                        actualPanelWidth, actual_kc, 0, blockBOffset);
          }
        }
      }
      // the part below (lower case) or above (upper case) the diagonal => GEPP
      {
        Index start = IsLower ? k2 : 0;
        Index end   = IsLower ? rows : std::min(actual_k2,rows);
        for(Index i2=start; i2<end; i2+=mc)
        {
          const Index actual_mc = std::min(i2+mc,end)-i2;
          gemm_pack_lhs<Scalar, Index, Traits::mr,Traits::LhsProgress, LhsStorageOrder,false>()
            (blockA, &lhs(i2, actual_k2), lhsStride, actual_kc, actual_mc);

          gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
        }
      }
    }
  }
};

// implements col-major += alpha * op(general) * op(triangular)
template <typename Scalar, typename Index, int Mode,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs>
struct product_triangular_matrix_matrix<Scalar,Index,Mode,false,
                                           LhsStorageOrder,ConjugateLhs,
                                           RhsStorageOrder,ConjugateRhs,ColMajor>
{
  typedef gebp_traits<Scalar,Scalar> Traits;
  enum {
    SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
    IsLower = (Mode&Lower) == Lower,
    SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1
  };

  static EIGEN_DONT_INLINE void run(
    Index _rows, Index _cols, Index _depth,
    const Scalar* _lhs, Index lhsStride,
    const Scalar* _rhs, Index rhsStride,
    Scalar* res,        Index resStride,
    Scalar alpha)
  {
    // strip zeros
    Index diagSize  = std::min(_cols,_depth);
    Index rows      = _rows;
    Index depth     = IsLower ? _depth : diagSize;
    Index cols      = IsLower ? diagSize : _cols;
    
    const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
    const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);

    Index kc = depth; // cache block size along the K direction
    Index mc = rows;  // cache block size along the M direction
    Index nc = cols;  // cache block size along the N direction
    computeProductBlockingSizes<Scalar,Scalar,4>(kc, mc, nc);

    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
    std::size_t sizeB = sizeW + kc*cols;
    ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
    ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);
    Scalar* blockB = allocatedBlockB + sizeW;

    Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,RhsStorageOrder> triangularBuffer;
    triangularBuffer.setZero();
    if((Mode&ZeroDiag)==ZeroDiag)
      triangularBuffer.diagonal().setZero();
    else
      triangularBuffer.diagonal().setOnes();

    gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
    gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
    gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
    gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder,false,true> pack_rhs_panel;

    for(Index k2=IsLower ? 0 : depth;
        IsLower ? k2<depth  : k2>0;
        IsLower ? k2+=kc   : k2-=kc)
    {
      Index actual_kc = std::min(IsLower ? depth-k2 : k2, kc);
      Index actual_k2 = IsLower ? k2 : k2-actual_kc;

      // align blocks with the end of the triangular part for trapezoidal rhs
      if(IsLower && (k2<cols) && (actual_k2+actual_kc>cols))
      {
        actual_kc = cols-k2;
        k2 = actual_k2 + actual_kc - kc;
      }

      // remaining size
      Index rs = IsLower ? std::min(cols,actual_k2) : cols - k2;
      // size of the triangular part
      Index ts = (IsLower && actual_k2>=cols) ? 0 : actual_kc;

      Scalar* geb = blockB+ts*ts;

      pack_rhs(geb, &rhs(actual_k2,IsLower ? 0 : k2), rhsStride, actual_kc, rs);

      // pack the triangular part of the rhs padding the unrolled blocks with zeros
      if(ts>0)
      {
        for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
        {
          Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
          Index actual_j2 = actual_k2 + j2;
          Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
          Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
          // general part
          pack_rhs_panel(blockB+j2*actual_kc,
                         &rhs(actual_k2+panelOffset, actual_j2), rhsStride,
                         panelLength, actualPanelWidth,
                         actual_kc, panelOffset);

          // append the triangular part via a temporary buffer
          for (Index j=0;j<actualPanelWidth;++j)
          {
            if (SetDiag)
              triangularBuffer.coeffRef(j,j) = rhs(actual_j2+j,actual_j2+j);
            for (Index k=IsLower ? j+1 : 0; IsLower ? k<actualPanelWidth : k<j; ++k)
              triangularBuffer.coeffRef(k,j) = rhs(actual_j2+k,actual_j2+j);
          }

          pack_rhs_panel(blockB+j2*actual_kc,
                         triangularBuffer.data(), triangularBuffer.outerStride(),
                         actualPanelWidth, actualPanelWidth,
                         actual_kc, j2);
        }
      }

      for (Index i2=0; i2<rows; i2+=mc)
      {
        const Index actual_mc = std::min(mc,rows-i2);
        pack_lhs(blockA, &lhs(i2, actual_k2), lhsStride, actual_kc, actual_mc);

        // triangular kernel
        if(ts>0)
        {
          for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
          {
            Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
            Index panelLength = IsLower ? actual_kc-j2 : j2+actualPanelWidth;
            Index blockOffset = IsLower ? j2 : 0;

            gebp_kernel(res+i2+(actual_k2+j2)*resStride, resStride,
                        blockA, blockB+j2*actual_kc,
                        actual_mc, panelLength, actualPanelWidth,
                        alpha,
                        actual_kc, actual_kc,  // strides
                        blockOffset, blockOffset,// offsets
                        allocatedBlockB); // workspace
          }
        }
        gebp_kernel(res+i2+(IsLower ? 0 : k2)*resStride, resStride,
                    blockA, geb, actual_mc, actual_kc, rs,
                    alpha,
                    -1, -1, 0, 0, allocatedBlockB);
      }
    }
  }
};

/***************************************************************************
* Wrapper to product_triangular_matrix_matrix
***************************************************************************/

template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false> >
  : traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>, Lhs, Rhs> >
{};

} // end namespace internal

template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
struct TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
  : public ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)

  TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

  template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
  {
    const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
    const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
                               * RhsBlasTraits::extractScalarFactor(m_rhs);

    internal::product_triangular_matrix_matrix<Scalar, Index,
      Mode, LhsIsTriangular,
      (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
      (internal::traits<_ActualRhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
      (internal::traits<Dest          >::Flags&RowMajorBit) ? RowMajor : ColMajor>
      ::run(
        lhs.rows(), rhs.cols(), lhs.cols(),// LhsIsTriangular ? rhs.cols() : lhs.rows(),           // sizes
        &lhs.coeffRef(0,0),    lhs.outerStride(), // lhs info
        &rhs.coeffRef(0,0),    rhs.outerStride(), // rhs info
        &dst.coeffRef(0,0), dst.outerStride(), // result info
        actualAlpha                            // alpha
      );
  }
};


#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_H