SelfadjointProduct.h 6.34 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SELFADJOINT_PRODUCT_H
#define EIGEN_SELFADJOINT_PRODUCT_H

/**********************************************************************
* This file implements a self adjoint product: C += A A^T updating only
* half of the selfadjoint matrix C.
* It corresponds to the level 3 SYRK and level 2 SYR Blas routines.
**********************************************************************/

template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_rank1_update;

template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_rank1_update<Scalar,Index,ColMajor,UpLo,ConjLhs,ConjRhs>
{
  static void run(Index size, Scalar* mat, Index stride, const Scalar* vec, Scalar alpha)
  {
    internal::conj_if<ConjRhs> cj;
    typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
    typedef typename internal::conditional<ConjLhs,typename OtherMap::ConjugateReturnType,const OtherMap&>::type ConjRhsType;
    for (Index i=0; i<size; ++i)
    {
      Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i+(UpLo==Lower ? i : 0), (UpLo==Lower ? size-i : (i+1)))
          += (alpha * cj(vec[i])) * ConjRhsType(OtherMap(vec+(UpLo==Lower ? i : 0),UpLo==Lower ? size-i : (i+1)));
    }
  }
};

template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_rank1_update<Scalar,Index,RowMajor,UpLo,ConjLhs,ConjRhs>
{
  static void run(Index size, Scalar* mat, Index stride, const Scalar* vec, Scalar alpha)
  {
    selfadjoint_rank1_update<Scalar,Index,ColMajor,UpLo==Lower?Upper:Lower,ConjRhs,ConjLhs>::run(size,mat,stride,vec,alpha);
  }
};

template<typename MatrixType, typename OtherType, int UpLo, bool OtherIsVector = OtherType::IsVectorAtCompileTime>
struct selfadjoint_product_selector;

template<typename MatrixType, typename OtherType, int UpLo>
struct selfadjoint_product_selector<MatrixType,OtherType,UpLo,true>
{
  static void run(MatrixType& mat, const OtherType& other, typename MatrixType::Scalar alpha)
  {
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::Index Index;
    typedef internal::blas_traits<OtherType> OtherBlasTraits;
    typedef typename OtherBlasTraits::DirectLinearAccessType ActualOtherType;
    typedef typename internal::remove_all<ActualOtherType>::type _ActualOtherType;
    const ActualOtherType actualOther = OtherBlasTraits::extract(other.derived());

    Scalar actualAlpha = alpha * OtherBlasTraits::extractScalarFactor(other.derived());

    enum {
      StorageOrder = (internal::traits<MatrixType>::Flags&RowMajorBit) ? RowMajor : ColMajor,
      UseOtherDirectly = _ActualOtherType::InnerStrideAtCompileTime==1
    };
    internal::gemv_static_vector_if<Scalar,OtherType::SizeAtCompileTime,OtherType::MaxSizeAtCompileTime,!UseOtherDirectly> static_other;

    ei_declare_aligned_stack_constructed_variable(Scalar, actualOtherPtr, other.size(),
      (UseOtherDirectly ? const_cast<Scalar*>(actualOther.data()) : static_other.data()));
      
    if(!UseOtherDirectly)
      Map<typename _ActualOtherType::PlainObject>(actualOtherPtr, actualOther.size()) = actualOther;
    
    selfadjoint_rank1_update<Scalar,Index,StorageOrder,UpLo,
                              OtherBlasTraits::NeedToConjugate  && NumTraits<Scalar>::IsComplex,
                            (!OtherBlasTraits::NeedToConjugate) && NumTraits<Scalar>::IsComplex>
          ::run(other.size(), mat.data(), mat.outerStride(), actualOtherPtr, actualAlpha);
  }
};

template<typename MatrixType, typename OtherType, int UpLo>
struct selfadjoint_product_selector<MatrixType,OtherType,UpLo,false>
{
  static void run(MatrixType& mat, const OtherType& other, typename MatrixType::Scalar alpha)
  {
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::Index Index;
    typedef internal::blas_traits<OtherType> OtherBlasTraits;
    typedef typename OtherBlasTraits::DirectLinearAccessType ActualOtherType;
    typedef typename internal::remove_all<ActualOtherType>::type _ActualOtherType;
    const ActualOtherType actualOther = OtherBlasTraits::extract(other.derived());

    Scalar actualAlpha = alpha * OtherBlasTraits::extractScalarFactor(other.derived());

    enum { IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0 };
    
    internal::general_matrix_matrix_triangular_product<Index,
      Scalar, _ActualOtherType::Flags&RowMajorBit ? RowMajor : ColMajor,   OtherBlasTraits::NeedToConjugate  && NumTraits<Scalar>::IsComplex,
      Scalar, _ActualOtherType::Flags&RowMajorBit ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits<Scalar>::IsComplex,
      MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor, UpLo>
      ::run(mat.cols(), actualOther.cols(),
            &actualOther.coeffRef(0,0), actualOther.outerStride(), &actualOther.coeffRef(0,0), actualOther.outerStride(),
            mat.data(), mat.outerStride(), actualAlpha);
  }
};

// high level API

template<typename MatrixType, unsigned int UpLo>
template<typename DerivedU>
SelfAdjointView<MatrixType,UpLo>& SelfAdjointView<MatrixType,UpLo>
::rankUpdate(const MatrixBase<DerivedU>& u, Scalar alpha)
{
  selfadjoint_product_selector<MatrixType,DerivedU,UpLo>::run(_expression().const_cast_derived(), u.derived(), alpha);

  return *this;
}

#endif // EIGEN_SELFADJOINT_PRODUCT_H