SelfadjointMatrixVector.h 10.6 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H

namespace internal {

/* Optimized selfadjoint matrix * vector product:
 * This algorithm processes 2 columns at onces that allows to both reduce
 * the number of load/stores of the result by a factor 2 and to reduce
 * the instruction dependency.
 */
template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs>
static EIGEN_DONT_INLINE void product_selfadjoint_vector(
  Index size,
  const Scalar*  lhs, Index lhsStride,
  const Scalar* _rhs, Index rhsIncr,
  Scalar* res,
  Scalar alpha)
{
  typedef typename packet_traits<Scalar>::type Packet;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  const Index PacketSize = sizeof(Packet)/sizeof(Scalar);

  enum {
    IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
    IsLower = UpLo == Lower ? 1 : 0,
    FirstTriangular = IsRowMajor == IsLower
  };

  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> cj0;
  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex, ConjugateRhs> cjd;

  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> pcj0;
  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;

  Scalar cjAlpha = ConjugateRhs ? conj(alpha) : alpha;

  // FIXME this copy is now handled outside product_selfadjoint_vector, so it could probably be removed.
  // if the rhs is not sequentially stored in memory we copy it to a temporary buffer,
  // this is because we need to extract packets
  ei_declare_aligned_stack_constructed_variable(Scalar,rhs,size,rhsIncr==1 ? const_cast<Scalar*>(_rhs) : 0);  
  if (rhsIncr!=1)
  {
    const Scalar* it = _rhs;
    for (Index i=0; i<size; ++i, it+=rhsIncr)
      rhs[i] = *it;
  }

  Index bound = std::max(Index(0),size-8) & 0xfffffffe;
  if (FirstTriangular)
    bound = size - bound;

  for (Index j=FirstTriangular ? bound : 0;
       j<(FirstTriangular ? size : bound);j+=2)
  {
    register const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
    register const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;

    Scalar t0 = cjAlpha * rhs[j];
    Packet ptmp0 = pset1<Packet>(t0);
    Scalar t1 = cjAlpha * rhs[j+1];
    Packet ptmp1 = pset1<Packet>(t1);

    Scalar t2 = 0;
    Packet ptmp2 = pset1<Packet>(t2);
    Scalar t3 = 0;
    Packet ptmp3 = pset1<Packet>(t3);

    size_t starti = FirstTriangular ? 0 : j+2;
    size_t endi   = FirstTriangular ? j : size;
    size_t alignedStart = (starti) + first_aligned(&res[starti], endi-starti);
    size_t alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);

    // TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
    res[j]   += cjd.pmul(internal::real(A0[j]), t0);
    res[j+1] += cjd.pmul(internal::real(A1[j+1]), t1);
    if(FirstTriangular)
    {
      res[j]   += cj0.pmul(A1[j],   t1);
      t3       += cj1.pmul(A1[j],   rhs[j]);
    }
    else
    {
      res[j+1] += cj0.pmul(A0[j+1],t0);
      t2 += cj1.pmul(A0[j+1], rhs[j+1]);
    }

    for (size_t i=starti; i<alignedStart; ++i)
    {
      res[i] += t0 * A0[i] + t1 * A1[i];
      t2 += conj(A0[i]) * rhs[i];
      t3 += conj(A1[i]) * rhs[i];
    }
    // Yes this an optimization for gcc 4.3 and 4.4 (=> huge speed up)
    // gcc 4.2 does this optimization automatically.
    const Scalar* EIGEN_RESTRICT a0It  = A0  + alignedStart;
    const Scalar* EIGEN_RESTRICT a1It  = A1  + alignedStart;
    const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
          Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
    for (size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
    {
      Packet A0i = ploadu<Packet>(a0It);  a0It  += PacketSize;
      Packet A1i = ploadu<Packet>(a1It);  a1It  += PacketSize;
      Packet Bi  = ploadu<Packet>(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases
      Packet Xi  = pload <Packet>(resIt);

      Xi    = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
      ptmp2 = pcj1.pmadd(A0i,  Bi, ptmp2);
      ptmp3 = pcj1.pmadd(A1i,  Bi, ptmp3);
      pstore(resIt,Xi); resIt += PacketSize;
    }
    for (size_t i=alignedEnd; i<endi; i++)
    {
      res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
      t2 += cj1.pmul(A0[i], rhs[i]);
      t3 += cj1.pmul(A1[i], rhs[i]);
    }

    res[j]   += alpha * (t2 + predux(ptmp2));
    res[j+1] += alpha * (t3 + predux(ptmp3));
  }
  for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
  {
    register const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;

    Scalar t1 = cjAlpha * rhs[j];
    Scalar t2 = 0;
    // TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
    res[j] += cjd.pmul(internal::real(A0[j]), t1);
    for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
    {
      res[i] += cj0.pmul(A0[i], t1);
      t2 += cj1.pmul(A0[i], rhs[i]);
    }
    res[j] += alpha * t2;
  }
}

} // end namespace internal 

/***************************************************************************
* Wrapper to product_selfadjoint_vector
***************************************************************************/

namespace internal {
template<typename Lhs, int LhsMode, typename Rhs>
struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
  : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
{};
}

template<typename Lhs, int LhsMode, typename Rhs>
struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
  : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)

  enum {
    LhsUpLo = LhsMode&(Upper|Lower)
  };

  SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

  template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
  {
    typedef typename Dest::Scalar ResScalar;
    typedef typename Base::RhsScalar RhsScalar;
    typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
    
    eigen_assert(dest.rows()==m_lhs.rows() && dest.cols()==m_rhs.cols());

    const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
    const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
                               * RhsBlasTraits::extractScalarFactor(m_rhs);

    enum {
      EvalToDest = (Dest::InnerStrideAtCompileTime==1),
      UseRhs = (_ActualRhsType::InnerStrideAtCompileTime==1)
    };
    
    internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
    internal::gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!UseRhs> static_rhs;

    ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
                                                  EvalToDest ? dest.data() : static_dest.data());
                                                  
    ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
        UseRhs ? const_cast<RhsScalar*>(rhs.data()) : static_rhs.data());
    
    if(!EvalToDest)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      int size = dest.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      MappedDest(actualDestPtr, dest.size()) = dest;
    }
      
    if(!UseRhs)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      int size = rhs.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
    }
      
      
    internal::product_selfadjoint_vector<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>
      (
        lhs.rows(),                             // size
        &lhs.coeffRef(0,0),  lhs.outerStride(), // lhs info
        actualRhsPtr, 1,                        // rhs info
        actualDestPtr,                          // result info
        actualAlpha                             // scale factor
      );
    
    if(!EvalToDest)
      dest = MappedDest(actualDestPtr, dest.size());
  }
};

namespace internal {
template<typename Lhs, typename Rhs, int RhsMode>
struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
  : traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
{};
}

template<typename Lhs, typename Rhs, int RhsMode>
struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
  : public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)

  enum {
    RhsUpLo = RhsMode&(Upper|Lower)
  };

  SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

  template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
  {
    // let's simply transpose the product
    Transpose<Dest> destT(dest);
    SelfadjointProductMatrix<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
                             Transpose<const Lhs>, 0, true>(m_rhs.transpose(), m_lhs.transpose()).scaleAndAddTo(destT, alpha);
  }
};


#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H