Product.h 27.2 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_PRODUCT_H
#define EIGEN_PRODUCT_H

/** \class GeneralProduct
  * \ingroup Core_Module
  *
  * \brief Expression of the product of two general matrices or vectors
  *
  * \param LhsNested the type used to store the left-hand side
  * \param RhsNested the type used to store the right-hand side
  * \param ProductMode the type of the product
  *
  * This class represents an expression of the product of two general matrices.
  * We call a general matrix, a dense matrix with full storage. For instance,
  * This excludes triangular, selfadjoint, and sparse matrices.
  * It is the return type of the operator* between general matrices. Its template
  * arguments are determined automatically by ProductReturnType. Therefore,
  * GeneralProduct should never be used direclty. To determine the result type of a
  * function which involves a matrix product, use ProductReturnType::Type.
  *
  * \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
  */
template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
class GeneralProduct;

enum {
  Large = 2,
  Small = 3
};

namespace internal {

template<int Rows, int Cols, int Depth> struct product_type_selector;

template<int Size, int MaxSize> struct product_size_category
{
  enum { is_large = MaxSize == Dynamic ||
                    Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
         value = is_large  ? Large
               : Size == 1 ? 1
                           : Small
  };
};

template<typename Lhs, typename Rhs> struct product_type
{
  typedef typename remove_all<Lhs>::type _Lhs;
  typedef typename remove_all<Rhs>::type _Rhs;
  enum {
    MaxRows  = _Lhs::MaxRowsAtCompileTime,
    Rows  = _Lhs::RowsAtCompileTime,
    MaxCols  = _Rhs::MaxColsAtCompileTime,
    Cols  = _Rhs::ColsAtCompileTime,
    MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
                                           _Rhs::MaxRowsAtCompileTime),
    Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
                                        _Rhs::RowsAtCompileTime),
    LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
  };

  // the splitting into different lines of code here, introducing the _select enums and the typedef below,
  // is to work around an internal compiler error with gcc 4.1 and 4.2.
private:
  enum {
    rows_select = product_size_category<Rows,MaxRows>::value,
    cols_select = product_size_category<Cols,MaxCols>::value,
    depth_select = product_size_category<Depth,MaxDepth>::value
  };
  typedef product_type_selector<rows_select, cols_select, depth_select> selector;

public:
  enum {
    value = selector::ret
  };
#ifdef EIGEN_DEBUG_PRODUCT
  static void debug()
  {
      EIGEN_DEBUG_VAR(Rows);
      EIGEN_DEBUG_VAR(Cols);
      EIGEN_DEBUG_VAR(Depth);
      EIGEN_DEBUG_VAR(rows_select);
      EIGEN_DEBUG_VAR(cols_select);
      EIGEN_DEBUG_VAR(depth_select);
      EIGEN_DEBUG_VAR(value);
  }
#endif
};


/* The following allows to select the kind of product at compile time
 * based on the three dimensions of the product.
 * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
// FIXME I'm not sure the current mapping is the ideal one.
template<int M, int N>  struct product_type_selector<M,N,1>              { enum { ret = OuterProduct }; };
template<int Depth>     struct product_type_selector<1,    1,    Depth>  { enum { ret = InnerProduct }; };
template<>              struct product_type_selector<1,    1,    1>      { enum { ret = InnerProduct }; };
template<>              struct product_type_selector<Small,1,    Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<1,    Small,Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Small,Small,Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Small, Small, 1>    { enum { ret = LazyCoeffBasedProductMode }; };
template<>              struct product_type_selector<Small, Large, 1>    { enum { ret = LazyCoeffBasedProductMode }; };
template<>              struct product_type_selector<Large, Small, 1>    { enum { ret = LazyCoeffBasedProductMode }; };
template<>              struct product_type_selector<1,    Large,Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<1,    Large,Large>  { enum { ret = GemvProduct }; };
template<>              struct product_type_selector<1,    Small,Large>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Large,1,    Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Large,1,    Large>  { enum { ret = GemvProduct }; };
template<>              struct product_type_selector<Small,1,    Large>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Small,Small,Large>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Large,Small,Large>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Small,Large,Large>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Large,Large,Large>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Large,Small,Small>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Small,Large,Small>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Large,Large,Small>  { enum { ret = GemmProduct }; };

} // end namespace internal

/** \class ProductReturnType
  * \ingroup Core_Module
  *
  * \brief Helper class to get the correct and optimized returned type of operator*
  *
  * \param Lhs the type of the left-hand side
  * \param Rhs the type of the right-hand side
  * \param ProductMode the type of the product (determined automatically by internal::product_mode)
  *
  * This class defines the typename Type representing the optimized product expression
  * between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
  * is the recommended way to define the result type of a function returning an expression
  * which involve a matrix product. The class Product should never be
  * used directly.
  *
  * \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
  */
template<typename Lhs, typename Rhs, int ProductType>
struct ProductReturnType
{
  // TODO use the nested type to reduce instanciations ????
//   typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
//   typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;

  typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
};

template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
{
  typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
  typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
  typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
};

template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
{
  typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
  typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
  typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
};

// this is a workaround for sun CC
template<typename Lhs, typename Rhs>
struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
{};

/***********************************************************************
*  Implementation of Inner Vector Vector Product
***********************************************************************/

// FIXME : maybe the "inner product" could return a Scalar
// instead of a 1x1 matrix ??
// Pro: more natural for the user
// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
// product ends up to a row-vector times col-vector product... To tackle this use
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);

namespace internal {

template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
 : traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
{};

}

template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, InnerProduct>
  : internal::no_assignment_operator,
    public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
{
    typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
  public:
    GeneralProduct(const Lhs& lhs, const Rhs& rhs)
    {
      EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

      Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
    }

    /** Convertion to scalar */
    operator const typename Base::Scalar() const {
      return Base::coeff(0,0);
    }
};

/***********************************************************************
*  Implementation of Outer Vector Vector Product
***********************************************************************/

namespace internal {
template<int StorageOrder> struct outer_product_selector;

template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
 : traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
{};

}

template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, OuterProduct>
  : public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
{
  public:
    EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)

    GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
    {
      EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
    }

    template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
    {
      internal::outer_product_selector<(int(Dest::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dest, alpha);
    }
};

namespace internal {

template<> struct outer_product_selector<ColMajor> {
  template<typename ProductType, typename Dest>
  static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
    typedef typename Dest::Index Index;
    // FIXME make sure lhs is sequentially stored
    // FIXME not very good if rhs is real and lhs complex while alpha is real too
    const Index cols = dest.cols();
    for (Index j=0; j<cols; ++j)
      dest.col(j) += (alpha * prod.rhs().coeff(j)) * prod.lhs();
  }
};

template<> struct outer_product_selector<RowMajor> {
  template<typename ProductType, typename Dest>
  static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
    typedef typename Dest::Index Index;
    // FIXME make sure rhs is sequentially stored
    // FIXME not very good if lhs is real and rhs complex while alpha is real too
    const Index rows = dest.rows();
    for (Index i=0; i<rows; ++i)
      dest.row(i) += (alpha * prod.lhs().coeff(i)) * prod.rhs();
  }
};

} // end namespace internal

/***********************************************************************
*  Implementation of General Matrix Vector Product
***********************************************************************/

/*  According to the shape/flags of the matrix we have to distinghish 3 different cases:
 *   1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
 *   2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
 *   3 - all other cases are handled using a simple loop along the outer-storage direction.
 *  Therefore we need a lower level meta selector.
 *  Furthermore, if the matrix is the rhs, then the product has to be transposed.
 */
namespace internal {

template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
 : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
{};

template<int Side, int StorageOrder, bool BlasCompatible>
struct gemv_selector;

} // end namespace internal

template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, GemvProduct>
  : public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
{
  public:
    EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)

    typedef typename Lhs::Scalar LhsScalar;
    typedef typename Rhs::Scalar RhsScalar;

    GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
    {
//       EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
//         YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
    }

    enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
    typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;

    template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
    {
      eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
      internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
                       bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
    }
};

namespace internal {

// The vector is on the left => transposition
template<int StorageOrder, bool BlasCompatible>
struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
{
  template<typename ProductType, typename Dest>
  static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
  {
    Transpose<Dest> destT(dest);
    enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
    gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
      ::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
        (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
  }
};

template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;

template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
{
  EIGEN_STRONG_INLINE  Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
};

template<typename Scalar,int Size>
struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
{
  EIGEN_STRONG_INLINE Scalar* data() { return 0; }
};

template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
{
  #if EIGEN_ALIGN_STATICALLY
  internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
  EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
  #else
  // Some architectures cannot align on the stack,
  // => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
  enum {
    ForceAlignment  = internal::packet_traits<Scalar>::Vectorizable,
    PacketSize      = internal::packet_traits<Scalar>::size
  };
  internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?PacketSize:0),0> m_data;
  EIGEN_STRONG_INLINE Scalar* data() {
    return ForceAlignment
            ? reinterpret_cast<Scalar*>((reinterpret_cast<size_t>(m_data.array) & ~(size_t(15))) + 16)
            : m_data.array;
  }
  #endif
};

template<> struct gemv_selector<OnTheRight,ColMajor,true>
{
  template<typename ProductType, typename Dest>
  static inline void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
  {
    typedef typename ProductType::Index Index;
    typedef typename ProductType::LhsScalar   LhsScalar;
    typedef typename ProductType::RhsScalar   RhsScalar;
    typedef typename ProductType::Scalar      ResScalar;
    typedef typename ProductType::RealScalar  RealScalar;
    typedef typename ProductType::ActualLhsType ActualLhsType;
    typedef typename ProductType::ActualRhsType ActualRhsType;
    typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
    typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
    typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;

    const ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
    const ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());

    ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
                                  * RhsBlasTraits::extractScalarFactor(prod.rhs());

    enum {
      // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
      // on, the other hand it is good for the cache to pack the vector anyways...
      EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
      ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
      MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
    };

    gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;

    // this is written like this (i.e., with a ?:) to workaround an ICE with ICC 12
    bool alphaIsCompatible = (!ComplexByReal) ? true : (imag(actualAlpha)==RealScalar(0));
    bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
    
    RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);

    ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
                                                  evalToDest ? dest.data() : static_dest.data());
    
    if(!evalToDest)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      int size = dest.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      if(!alphaIsCompatible)
      {
        MappedDest(actualDestPtr, dest.size()).setZero();
        compatibleAlpha = RhsScalar(1);
      }
      else
        MappedDest(actualDestPtr, dest.size()) = dest;
    }

    general_matrix_vector_product
      <Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
        actualLhs.rows(), actualLhs.cols(),
        &actualLhs.coeffRef(0,0), actualLhs.outerStride(),
        actualRhs.data(), actualRhs.innerStride(),
        actualDestPtr, 1,
        compatibleAlpha);

    if (!evalToDest)
    {
      if(!alphaIsCompatible)
        dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
      else
        dest = MappedDest(actualDestPtr, dest.size());
    }
  }
};

template<> struct gemv_selector<OnTheRight,RowMajor,true>
{
  template<typename ProductType, typename Dest>
  static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
  {
    typedef typename ProductType::LhsScalar LhsScalar;
    typedef typename ProductType::RhsScalar RhsScalar;
    typedef typename ProductType::Scalar    ResScalar;
    typedef typename ProductType::Index Index;
    typedef typename ProductType::ActualLhsType ActualLhsType;
    typedef typename ProductType::ActualRhsType ActualRhsType;
    typedef typename ProductType::_ActualRhsType _ActualRhsType;
    typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
    typedef typename ProductType::RhsBlasTraits RhsBlasTraits;

    typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
    typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());

    ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
                                  * RhsBlasTraits::extractScalarFactor(prod.rhs());

    enum {
      // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
      // on, the other hand it is good for the cache to pack the vector anyways...
      DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
    };

    gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;

    ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
        DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());

    if(!DirectlyUseRhs)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      int size = actualRhs.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
    }

    general_matrix_vector_product
      <Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
        actualLhs.rows(), actualLhs.cols(),
        &actualLhs.coeffRef(0,0), actualLhs.outerStride(),
        actualRhsPtr, 1,
        &dest.coeffRef(0,0), dest.innerStride(),
        actualAlpha);
  }
};

template<> struct gemv_selector<OnTheRight,ColMajor,false>
{
  template<typename ProductType, typename Dest>
  static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
  {
    typedef typename Dest::Index Index;
    // TODO makes sure dest is sequentially stored in memory, otherwise use a temp
    const Index size = prod.rhs().rows();
    for(Index k=0; k<size; ++k)
      dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
  }
};

template<> struct gemv_selector<OnTheRight,RowMajor,false>
{
  template<typename ProductType, typename Dest>
  static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
  {
    typedef typename Dest::Index Index;
    // TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
    const Index rows = prod.rows();
    for(Index i=0; i<rows; ++i)
      dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
  }
};

} // end namespace internal

/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/

/** \returns the matrix product of \c *this and \a other.
  *
  * \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
  *
  * \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
  */
template<typename Derived>
template<typename OtherDerived>
inline const typename ProductReturnType<Derived,OtherDerived>::Type
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
  // A note regarding the function declaration: In MSVC, this function will sometimes
  // not be inlined since DenseStorage is an unwindable object for dynamic
  // matrices and product types are holding a member to store the result.
  // Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
  enum {
    ProductIsValid =  Derived::ColsAtCompileTime==Dynamic
                   || OtherDerived::RowsAtCompileTime==Dynamic
                   || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
    AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
    SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
  };
  // note to the lost user:
  //    * for a dot product use: v1.dot(v2)
  //    * for a coeff-wise product use: v1.cwiseProduct(v2)
  EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
    INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
  EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
    INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
  EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
#ifdef EIGEN_DEBUG_PRODUCT
  internal::product_type<Derived,OtherDerived>::debug();
#endif
  return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}

/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
  *
  * The returned product will behave like any other expressions: the coefficients of the product will be
  * computed once at a time as requested. This might be useful in some extremely rare cases when only
  * a small and no coherent fraction of the result's coefficients have to be computed.
  *
  * \warning This version of the matrix product can be much much slower. So use it only if you know
  * what you are doing and that you measured a true speed improvement.
  *
  * \sa operator*(const MatrixBase&)
  */
template<typename Derived>
template<typename OtherDerived>
const typename LazyProductReturnType<Derived,OtherDerived>::Type
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
{
  enum {
    ProductIsValid =  Derived::ColsAtCompileTime==Dynamic
                   || OtherDerived::RowsAtCompileTime==Dynamic
                   || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
    AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
    SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
  };
  // note to the lost user:
  //    * for a dot product use: v1.dot(v2)
  //    * for a coeff-wise product use: v1.cwiseProduct(v2)
  EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
    INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
  EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
    INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
  EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)

  return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}

#endif // EIGEN_PRODUCT_H