CircularSurvey.cc 43.1 KB
Newer Older
1
#include "CircularSurvey.h"
2
#include "RoutingThread.h"
3
// QGC
4 5
#include "JsonHelper.h"
#include "QGCApplication.h"
6
#include "QGCLoggingCategory.h"
7
// Wima
8
#include "snake.h"
9
#define CLIPPER_SCALE 1000000
10 11 12
#include "clipper/clipper.hpp"

#include "Geometry/GenericCircle.h"
13 14
#include "Snake/SnakeTile.h"

15
// boost
16 17 18
#include <boost/units/io.hpp>
#include <boost/units/systems/si.hpp>

19 20 21 22 23 24
QGC_LOGGING_CATEGORY(CircularSurveyLog, "CircularSurveyLog")

using namespace ClipperLib;
template <> auto get<0>(const IntPoint &p) { return p.X; }
template <> auto get<1>(const IntPoint &p) { return p.Y; }

25 26 27 28 29 30 31 32 33
template <class Functor> class CommandRAII {
public:
  CommandRAII(Functor f) : fun(f) {}
  ~CommandRAII() { fun(); }

private:
  Functor fun;
};

34 35 36 37 38
template <typename T>
constexpr typename std::underlying_type<T>::type integral(T value) {
  return static_cast<typename std::underlying_type<T>::type>(value);
}

39 40 41
bool circularTransects(const snake::FPolygon &polygon, snake::Length deltaR,
                       snake::Angle deltaAlpha, snake::Length minLength,
                       snake::Transects &transects);
42

43 44 45
bool linearTransects(const snake::FPolygon &polygon, snake::Length distance,
                     snake::Angle angle, snake::Length minLength,
                     snake::Transects &transects);
46

47
const char *CircularSurvey::settingsGroup = "CircularSurvey";
48 49 50 51
const char *CircularSurvey::transectDistanceName = "TransectDistance";
const char *CircularSurvey::alphaName = "Alpha";
const char *CircularSurvey::minLengthName = "MinLength";
const char *CircularSurvey::typeName = "Type";
52 53 54 55
const char *CircularSurvey::CircularSurveyName = "CircularSurvey";
const char *CircularSurvey::refPointLatitudeName = "ReferencePointLat";
const char *CircularSurvey::refPointLongitudeName = "ReferencePointLong";
const char *CircularSurvey::refPointAltitudeName = "ReferencePointAlt";
56
const char *CircularSurvey::variantName = "Variant";
57 58
const char *CircularSurvey::numRunsName = "NumRuns";
const char *CircularSurvey::runName = "Run";
59 60 61 62 63 64 65

CircularSurvey::CircularSurvey(Vehicle *vehicle, bool flyView,
                               const QString &kmlOrShpFile, QObject *parent)
    : TransectStyleComplexItem(vehicle, flyView, settingsGroup, parent),
      _referencePoint(QGeoCoordinate(0, 0, 0)),
      _metaDataMap(FactMetaData::createMapFromJsonFile(
          QStringLiteral(":/json/CircularSurvey.SettingsGroup.json"), this)),
66 67 68 69
      _transectDistance(settingsGroup, _metaDataMap[transectDistanceName]),
      _alpha(settingsGroup, _metaDataMap[alphaName]),
      _minLength(settingsGroup, _metaDataMap[minLengthName]),
      _type(settingsGroup, _metaDataMap[typeName]),
70
      _variant(settingsGroup, _metaDataMap[variantName]),
71 72
      _numRuns(settingsGroup, _metaDataMap[numRunsName]),
      _run(settingsGroup, _metaDataMap[runName]),
73 74
      _pWorker(std::make_unique<RoutingThread>()), _state(STATE::DEFAULT),
      _hidePolygon(false) {
75 76 77
  Q_UNUSED(kmlOrShpFile)
  _editorQml = "qrc:/qml/CircularSurveyItemEditor.qml";

78
  // Connect facts.
79
  connect(&_transectDistance, &Fact::valueChanged, this,
80
          &CircularSurvey::_rebuildTransects);
81
  connect(&_alpha, &Fact::valueChanged, this,
82
          &CircularSurvey::_rebuildTransects);
83
  connect(&_minLength, &Fact::valueChanged, this,
84
          &CircularSurvey::_rebuildTransects);
85
  connect(this, &CircularSurvey::refPointChanged, this,
86
          &CircularSurvey::_rebuildTransects);
87 88
  connect(&this->_type, &Fact::rawValueChanged, this,
          &CircularSurvey::_rebuildTransects);
89 90
  connect(&this->_variant, &Fact::rawValueChanged, this,
          &CircularSurvey::_changeVariant);
91 92 93 94 95
  connect(&this->_run, &Fact::rawValueChanged, this,
          &CircularSurvey::_changeRun);
  connect(&this->_numRuns, &Fact::rawValueChanged, this,
          &CircularSurvey::_rebuildTransects);

96 97 98 99 100 101
  // Areas.
  connect(this, &CircularSurvey::measurementAreaChanged, this,
          &CircularSurvey::_rebuildTransects);
  connect(this, &CircularSurvey::joinedAreaChanged, this,
          &CircularSurvey::_rebuildTransects);

102
  // Connect worker.
103
  connect(this->_pWorker.get(), &RoutingThread::result, this,
104
          &CircularSurvey::_setTransects);
105
  connect(this->_pWorker.get(), &RoutingThread::calculatingChanged, this,
106
          &CircularSurvey::calculatingChanged);
107
  this->_transectsDirty = true;
108 109
}

110 111
CircularSurvey::~CircularSurvey() {}

112
void CircularSurvey::resetReference() { setRefPoint(_mArea.center()); }
113

114
void CircularSurvey::reverse() {
115
  this->_state = STATE::REVERSE;
116 117 118
  this->_rebuildTransects();
}

119 120 121
void CircularSurvey::setRefPoint(const QGeoCoordinate &refPt) {
  if (refPt != _referencePoint) {
    _referencePoint = refPt;
122
    _referencePoint.setAltitude(0);
123 124 125 126 127 128 129

    emit refPointChanged();
  }
}

QGeoCoordinate CircularSurvey::refPoint() const { return _referencePoint; }

130
Fact *CircularSurvey::transectDistance() { return &_transectDistance; }
131

132
Fact *CircularSurvey::alpha() { return &_alpha; }
133

134 135
bool CircularSurvey::hidePolygon() const { return _hidePolygon; }

136 137
QList<QString> CircularSurvey::variantNames() const { return _variantNames; }

138 139
QList<QString> CircularSurvey::runNames() const { return _runNames; }

140 141 142 143
const QList<QList<QGeoCoordinate>> &CircularSurvey::rawTransects() const {
  return this->_rawTransects;
}

144 145 146 147 148 149 150
void CircularSurvey::setHidePolygon(bool hide) {
  if (this->_hidePolygon != hide) {
    this->_hidePolygon = hide;
    emit hidePolygonChanged();
  }
}

151 152 153 154 155 156 157 158 159 160 161
void CircularSurvey::setMeasurementArea(const WimaMeasurementAreaData &mArea) {
  if (this->_mArea != mArea) {
    this->_mArea = mArea;
    emit measurementAreaChanged();
  }
}

void CircularSurvey::setJoinedArea(const WimaJoinedAreaData &jArea) {
  if (this->_jArea != jArea) {
    this->_jArea = jArea;
    emit joinedAreaChanged();
162 163 164
  }
}

165 166 167 168 169 170 171 172 173 174 175
void CircularSurvey::setMeasurementArea(const WimaMeasurementArea &mArea) {
  if (this->_mArea != mArea) {
    this->_mArea = mArea;
    emit measurementAreaChanged();
  }
}

void CircularSurvey::setJoinedArea(const WimaJoinedArea &jArea) {
  if (this->_jArea != jArea) {
    this->_jArea = jArea;
    emit joinedAreaChanged();
176 177
  }
}
178 179 180

bool CircularSurvey::load(const QJsonObject &complexObject, int sequenceNumber,
                          QString &errorString) {
181 182
  // We need to pull version first to determine what validation/conversion
  // needs to be performed
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  QList<JsonHelper::KeyValidateInfo> versionKeyInfoList = {
      {JsonHelper::jsonVersionKey, QJsonValue::Double, true},
  };
  if (!JsonHelper::validateKeys(complexObject, versionKeyInfoList,
                                errorString)) {
    return false;
  }

  int version = complexObject[JsonHelper::jsonVersionKey].toInt();
  if (version != 1) {
    errorString = tr("Survey items do not support version %1").arg(version);
    return false;
  }

  QList<JsonHelper::KeyValidateInfo> keyInfoList = {
      {VisualMissionItem::jsonTypeKey, QJsonValue::String, true},
      {ComplexMissionItem::jsonComplexItemTypeKey, QJsonValue::String, true},
200 201 202 203
      {transectDistanceName, QJsonValue::Double, true},
      {alphaName, QJsonValue::Double, true},
      {minLengthName, QJsonValue::Double, true},
      {typeName, QJsonValue::Double, true},
204
      {variantName, QJsonValue::Double, false},
205 206
      {numRunsName, QJsonValue::Double, false},
      {runName, QJsonValue::Double, false},
207 208 209 210 211 212 213 214 215 216 217 218 219 220
      {refPointLatitudeName, QJsonValue::Double, true},
      {refPointLongitudeName, QJsonValue::Double, true},
      {refPointAltitudeName, QJsonValue::Double, true},
  };

  if (!JsonHelper::validateKeys(complexObject, keyInfoList, errorString)) {
    return false;
  }

  QString itemType = complexObject[VisualMissionItem::jsonTypeKey].toString();
  QString complexType =
      complexObject[ComplexMissionItem::jsonComplexItemTypeKey].toString();
  if (itemType != VisualMissionItem::jsonTypeComplexItemValue ||
      complexType != CircularSurveyName) {
221 222 223 224 225
    errorString = tr("%1 does not support loading this complex mission item "
                     "type: %2:%3")
                      .arg(qgcApp()->applicationName())
                      .arg(itemType)
                      .arg(complexType);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    return false;
  }

  _ignoreRecalc = true;

  setSequenceNumber(sequenceNumber);

  if (!_surveyAreaPolygon.loadFromJson(complexObject, true /* required */,
                                       errorString)) {
    _surveyAreaPolygon.clear();
    return false;
  }

  if (!_load(complexObject, errorString)) {
    _ignoreRecalc = false;
    return false;
  }

244 245 246 247
  _transectDistance.setRawValue(complexObject[transectDistanceName].toDouble());
  _alpha.setRawValue(complexObject[alphaName].toDouble());
  _minLength.setRawValue(complexObject[minLengthName].toDouble());
  _type.setRawValue(complexObject[typeName].toInt());
248
  _variant.setRawValue(complexObject[variantName].toInt());
249 250
  _numRuns.setRawValue(complexObject[numRunsName].toInt());
  _run.setRawValue(complexObject[runName].toInt());
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  _referencePoint.setLongitude(complexObject[refPointLongitudeName].toDouble());
  _referencePoint.setLatitude(complexObject[refPointLatitudeName].toDouble());
  _referencePoint.setAltitude(complexObject[refPointAltitudeName].toDouble());

  _ignoreRecalc = false;

  _recalcComplexDistance();
  if (_cameraShots == 0) {
    // Shot count was possibly not available from plan file
    _recalcCameraShots();
  }

  return true;
}

QString CircularSurvey::mapVisualQML() const {
  return QStringLiteral("CircularSurveyMapVisual.qml");
}

void CircularSurvey::save(QJsonArray &planItems) {
  QJsonObject saveObject;

  _save(saveObject);

  saveObject[JsonHelper::jsonVersionKey] = 1;
  saveObject[VisualMissionItem::jsonTypeKey] =
      VisualMissionItem::jsonTypeComplexItemValue;
  saveObject[ComplexMissionItem::jsonComplexItemTypeKey] = CircularSurveyName;

280 281 282 283
  saveObject[transectDistanceName] = _transectDistance.rawValue().toDouble();
  saveObject[alphaName] = _alpha.rawValue().toDouble();
  saveObject[minLengthName] = _minLength.rawValue().toDouble();
  saveObject[typeName] = double(_type.rawValue().toUInt());
284
  saveObject[variantName] = double(_variant.rawValue().toUInt());
285 286
  saveObject[numRunsName] = double(_numRuns.rawValue().toUInt());
  saveObject[runName] = double(_numRuns.rawValue().toUInt());
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
  saveObject[refPointLongitudeName] = _referencePoint.longitude();
  saveObject[refPointLatitudeName] = _referencePoint.latitude();
  saveObject[refPointAltitudeName] = _referencePoint.altitude();

  // Polygon shape
  _surveyAreaPolygon.saveToJson(saveObject);

  planItems.append(saveObject);
}

bool CircularSurvey::specifiesCoordinate() const { return true; }

void CircularSurvey::appendMissionItems(QList<MissionItem *> &items,
                                        QObject *missionItemParent) {
  if (_transectsDirty)
    return;
  if (_loadedMissionItems.count()) {
    // We have mission items from the loaded plan, use those
    _appendLoadedMissionItems(items, missionItemParent);
  } else {
    // Build the mission items on the fly
    _buildAndAppendMissionItems(items, missionItemParent);
  }
}

void CircularSurvey::_appendLoadedMissionItems(QList<MissionItem *> &items,
                                               QObject *missionItemParent) {
  if (_transectsDirty)
    return;
  int seqNum = _sequenceNumber;

  for (const MissionItem *loadedMissionItem : _loadedMissionItems) {
    MissionItem *item = new MissionItem(*loadedMissionItem, missionItemParent);
    item->setSequenceNumber(seqNum++);
    items.append(item);
  }
}

void CircularSurvey::_buildAndAppendMissionItems(QList<MissionItem *> &items,
                                                 QObject *missionItemParent) {
327
  if (_transectsDirty || _transects.count() == 0)
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    return;

  MissionItem *item;
  int seqNum = _sequenceNumber;

  MAV_FRAME mavFrame =
      followTerrain() || !_cameraCalc.distanceToSurfaceRelative()
          ? MAV_FRAME_GLOBAL
          : MAV_FRAME_GLOBAL_RELATIVE_ALT;

  for (const QList<TransectStyleComplexItem::CoordInfo_t> &transect :
       _transects) {
    // bool transectEntry = true;

    for (const CoordInfo_t &transectCoordInfo : transect) {
      item = new MissionItem(
          seqNum++, MAV_CMD_NAV_WAYPOINT, mavFrame,
345 346
          0,   // Hold time (delay for hover and capture to settle vehicle
               // before image is taken)
347 348 349 350 351 352 353 354 355 356 357 358 359 360
          0.0, // No acceptance radius specified
          0.0, // Pass through waypoint
          std::numeric_limits<double>::quiet_NaN(), // Yaw unchanged
          transectCoordInfo.coord.latitude(),
          transectCoordInfo.coord.longitude(),
          transectCoordInfo.coord.altitude(),
          true,  // autoContinue
          false, // isCurrentItem
          missionItemParent);
      items.append(item);
    }
  }
}

361 362 363
void CircularSurvey::_changeVariant() {
  this->_state = STATE::VARIANT_CHANGE;
  this->_rebuildTransects();
364 365
}

366 367 368 369 370
void CircularSurvey::_changeRun() {
  this->_state = STATE::RUN_CHANGE;
  this->_rebuildTransects();
}

371
void CircularSurvey::_updateWorker() {
372 373
  // Mark transects as dirty.
  this->_transectsDirty = true;
374 375 376
  // Reset data.
  this->_transects.clear();
  this->_rawTransects.clear();
377
  this->_variantVector.clear();
378
  this->_variantNames.clear();
379
  this->_runNames.clear();
380
  emit variantNamesChanged();
381
  emit runNamesChanged();
382 383 384

  // Prepare data.
  auto ref = this->_referencePoint;
385 386
  auto geoPolygon = this->_mArea.coordinateList();
  for (auto &v : geoPolygon) {
387 388
    v.setAltitude(0);
  }
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
  auto pPolygon = std::make_shared<snake::FPolygon>();
  snake::areaToEnu(ref, geoPolygon, *pPolygon);

  // Progress and tiles.
  const auto &progress = this->_mArea.progress();
  const auto *tiles = this->_mArea.tiles();
  if (progress.size() == tiles->count()) {
    for (int i = 0; i < tiles->count(); ++i) {
      if (progress[i] == 100) {
        const auto *tile = tiles->value<const SnakeTile *>(i);
        if (tile != nullptr) {
          snake::FPolygon tileENU;
          snake::areaToEnu(ref, tile->coordinateList(), tileENU);
          pPolygon->inners().push_back(std::move(tileENU.outer()));
        } else {
          qCWarning(CircularSurveyLog)
              << "CS::_updateWorker(): progress.size() != tiles->count().";
          return;
        }
      }
    }
  } else {
    qCWarning(CircularSurveyLog)
        << "CS::_updateWorker(): progress.size() != tiles->count().";
    return;
  }
  bg::correct(*pPolygon);

  // Convert safe area.
  auto geoDepot = this->_jArea.center();
  auto geoSafeArea = this->_jArea.coordinateList();
  if (!geoDepot.isValid() || !(geoSafeArea.size() >= 3)) {
    return;
  }
  for (auto &v : geoSafeArea) {
424 425
    v.setAltitude(0);
  }
426 427 428 429
  snake::FPolygon safeArea;
  snake::areaToEnu(ref, geoSafeArea, safeArea);
  snake::FPoint depot;
  snake::toENU(ref, geoDepot, depot);
430 431

  // Routing par.
432 433
  RoutingParameter par;
  par.numSolutionsPerRun = 5;
434 435 436 437 438 439 440 441 442 443 444
  if (this->_numRuns.rawValue().toUInt() < 1) {
    disconnect(&this->_numRuns, &Fact::rawValueChanged, this,
               &CircularSurvey::_rebuildTransects);

    this->_numRuns.setCookedValue(QVariant(1));

    connect(&this->_numRuns, &Fact::rawValueChanged, this,
            &CircularSurvey::_rebuildTransects);
  }
  par.numRuns = this->_numRuns.rawValue().toUInt();

445
  auto &safeAreaENU = par.safeArea;
446
  snake::areaToEnu(ref, geoSafeArea, safeAreaENU);
447 448

  // Fetch transect parameter.
449 450 451 452 453 454 455 456 457 458 459 460
  auto distance = snake::Length(this->_transectDistance.rawValue().toDouble() *
                                bu::si::meter);
  auto minLength =
      snake::Length(this->_minLength.rawValue().toDouble() * bu::si::meter);
  auto alpha =
      snake::Angle(this->_alpha.rawValue().toDouble() * bu::degree::degree);

  // Select survey type.
  if (this->_type.rawValue().toUInt() == integral(Type::Circular)) {
    // Clip angle.
    if (alpha >= snake::Angle(0.3 * bu::degree::degree) &&
        alpha <= snake::Angle(45 * bu::degree::degree)) {
461
      auto generator = [depot, pPolygon, distance, alpha,
462
                        minLength](snake::Transects &transects) -> bool {
463 464 465
        transects.push_back(snake::FLineString{depot});
        return circularTransects(*pPolygon, distance, alpha, minLength,
                                 transects);
466 467 468 469 470 471 472 473 474 475 476
      };
      // Start routing worker.
      this->_pWorker->route(par, generator);
    } else {
      if (alpha < snake::Angle(0.3 * bu::degree::degree)) {
        this->_alpha.setCookedValue(QVariant(0.3));
      } else {
        this->_alpha.setCookedValue(QVariant(45));
      }
    }
  } else if (this->_type.rawValue().toUInt() == integral(Type::Linear)) {
477
    auto generator = [depot, pPolygon, distance, alpha,
478
                      minLength](snake::Transects &transects) -> bool {
479 480
      transects.push_back(snake::FLineString{depot});
      return linearTransects(*pPolygon, distance, alpha, minLength, transects);
481 482 483 484
    };
    // Start routing worker.
    this->_pWorker->route(par, generator);
  } else {
485
    qCWarning(CircularSurveyLog)
486 487 488
        << "CircularSurvey::rebuildTransectsPhase1(): invalid survey type:"
        << this->_type.rawValue().toUInt();
  }
489 490
}

491
void CircularSurvey::_changeVariantRunWorker() {
492
  auto variant = this->_variant.rawValue().toUInt();
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
  auto run = this->_run.rawValue().toUInt();

  // Find old variant and run. Old run corresponts with empty list.
  std::size_t old_variant = std::numeric_limits<std::size_t>::max();
  std::size_t old_run = std::numeric_limits<std::size_t>::max();
  for (std::size_t i = 0; i < std::size_t(this->_variantVector.size()); ++i) {
    const auto &solution = this->_variantVector.at(i);
    for (std::size_t j = 0; j < std::size_t(solution.size()); ++j) {
      const auto &r = solution[j];
      if (r.isEmpty()) {
        old_variant = i;
        old_run = j;
        // break
        i = std::numeric_limits<std::size_t>::max() - 1;
        j = std::numeric_limits<std::size_t>::max() - 1;
      }
509 510
    }
  }
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
  // Swap route.
  if (variant != old_variant || run != old_run) {
    // Swap in new variant, if condition.
    if (variant < std::size_t(this->_variantVector.size()) &&
        run < std::size_t(this->_variantVector.at(variant).size())) {
      if (old_variant != std::numeric_limits<std::size_t>::max()) {
        // this->_transects containes a route, swap it back to
        // this->_solutionVector
        auto &old_solution = this->_variantVector[old_variant];
        auto &old_route = old_solution[old_run];
        old_route.swap(this->_transects);
      }
      auto &solution = this->_variantVector[variant];
      auto &route = solution[run];
      this->_transects.swap(route);

      if (variant != old_variant) {
        // Add run names.
        this->_runNames.clear();
        for (std::size_t i = 1; i <= std::size_t(solution.size()); ++i) {
          this->_runNames.append(QString::number(i));
        }
        emit runNamesChanged();
      }

    } else { // error
538 539 540 541
      qCWarning(CircularSurveyLog)
          << "Variant or run out of bounds (variant = " << variant
          << ", run = " << run << ").";
      qCWarning(CircularSurveyLog) << "Resetting variant and run.";
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

      disconnect(&this->_variant, &Fact::rawValueChanged, this,
                 &CircularSurvey::_changeVariant);
      disconnect(&this->_run, &Fact::rawValueChanged, this,
                 &CircularSurvey::_changeRun);
      if (old_variant < std::size_t(this->_variantVector.size())) {
        this->_variant.setCookedValue(QVariant::fromValue(old_variant));
        auto &solution = this->_variantVector[old_variant];
        if (old_run < std::size_t(solution.size())) {
          this->_run.setCookedValue(QVariant::fromValue(old_run));
        } else {
          this->_run.setCookedValue(QVariant(0));
        }
      } else {
        this->_variant.setCookedValue(QVariant(0));
        this->_run.setCookedValue(QVariant(0));
      }
      connect(&this->_variant, &Fact::rawValueChanged, this,
              &CircularSurvey::_changeVariant);
      connect(&this->_run, &Fact::rawValueChanged, this,
              &CircularSurvey::_changeRun);
      if (this->_variantVector.size() > 0 &&
          this->_variantVector.front().size() > 0) {
        this->_changeVariantRunWorker();
      }
    }
568 569
  }
}
570

571 572 573 574 575 576 577 578 579 580 581
void CircularSurvey::_reverseWorker() {
  if (this->_transects.size() > 0) {
    auto &t = this->_transects.front();
    QList<QList<CoordInfo_t>> tr{QList<CoordInfo_t>()};
    auto &list = tr.front();
    list.reserve(t.size());
    for (auto it = t.end() - 1; it >= t.begin(); --it) {
      list.append(*it);
    }
    this->_transects.swap(tr);
  }
582 583
}

584 585 586 587 588 589 590 591
void CircularSurvey::_storeWorker() {
  // If the transects are getting rebuilt then any previously loaded
  // mission items are now invalid.
  if (_loadedMissionItemsParent) {
    _loadedMissionItems.clear();
    _loadedMissionItemsParent->deleteLater();
    _loadedMissionItemsParent = nullptr;
  }
592

593
  // Store raw transects.
594
  const auto &pRoutingData = this->_pRoutingData;
595 596 597
  const auto &ori = this->_referencePoint;
  const auto &transectsENU = pRoutingData->transects;
  QList<QList<QGeoCoordinate>> rawTransects;
598
  for (std::size_t i = 0; i < transectsENU.size(); ++i) {
599 600 601 602 603 604 605
    const auto &t = transectsENU[i];
    rawTransects.append(QList<QGeoCoordinate>());
    auto trGeo = rawTransects.back();
    for (auto &v : t) {
      QGeoCoordinate c;
      snake::fromENU(ori, v, c);
      trGeo.append(c);
606
    }
607 608
  }

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
  // Store solutions.
  QVector<Runs> solutionVector;
  const auto nSolutions = pRoutingData->solutionVector.size();
  for (std::size_t j = 0; j < nSolutions; ++j) {
    const auto &solution = pRoutingData->solutionVector.at(j);
    const auto nRuns = solution.size();
    // Store runs.
    Runs runs(nRuns, Transects{QList<CoordInfo_t>()});
    for (std::size_t k = 0; k < nRuns; ++k) {
      const auto &route = solution.at(k);
      const auto &path = route.path;
      const auto &info = route.info;
      if (info.size() > 1) {
        // Find index of first waypoint.
        std::size_t idxFirst = 0;
624
        const auto &infoFirst = info.at(1);
625 626 627 628 629 630 631
        const auto &firstTransect = transectsENU[infoFirst.index];
        if (firstTransect.size() > 0) {
          const auto &firstWaypoint =
              infoFirst.reversed ? firstTransect.back() : firstTransect.front();
          double th = 0.01;
          for (std::size_t i = 0; i < path.size(); ++i) {
            auto dist = bg::distance(path[i], firstWaypoint);
632
            if (dist < th) {
633
              idxFirst = i;
634 635 636
              break;
            }
          }
637

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
          // Find index of last waypoint.
          std::size_t idxLast = path.size() - 1;
          const auto &infoLast = info.at(info.size() - 2);
          const auto &lastTransect = transectsENU[infoLast.index];
          if (lastTransect.size() > 0) {
            const auto &lastWaypoint =
                infoLast.reversed ? lastTransect.front() : lastTransect.back();
            for (long i = path.size() - 1; i >= 0; --i) {
              auto dist = bg::distance(path[i], lastWaypoint);
              if (dist < th) {
                idxLast = i;
                break;
              }
            }

            // Convert to geo coordinates.
            auto &list = runs[k].front();
            for (std::size_t i = idxFirst; i <= idxLast; ++i) {
              auto &vertex = path[i];
              QGeoCoordinate c;
              snake::fromENU(ori, vertex, c);
              list.append(CoordInfo_t{c, CoordTypeInterior});
            }
          } else {
662 663
            qCWarning(CircularSurveyLog)
                << "CS::_storeWorker(): lastTransect.size() == 0";
664 665
          }
        } else {
666 667
          qCWarning(CircularSurveyLog)
              << "CS::_storeWorker(): firstTransect.size() == 0";
668 669
        }
      } else {
670 671
        qCWarning(CircularSurveyLog)
            << "CS::_storeWorker(): transectsInfo.size() <= 1";
672 673 674 675 676 677 678 679 680 681
      }
    }
    // Remove empty runs.
    bool error = true;
    for (auto it = runs.begin(); it < runs.end();) {
      if (it->size() > 0 && it->front().size() > 0) {
        error = false;
        ++it;
      } else {
        it = runs.erase(it);
682
      }
683 684 685
    }
    if (!error) {
      solutionVector.push_back(std::move(runs));
686
    }
687
  }
688

689 690 691
  // Remove empty solutions.
  std::size_t nSol = 0;
  for (auto it = solutionVector.begin(); it < solutionVector.end();) {
692 693
    if (it->size() > 0 && it->front().size() > 0) {
      ++it;
694
      ++nSol;
695
    } else {
696
      it = solutionVector.erase(it);
697
    }
698
  }
699 700

  // Assign routes if no error occured.
701
  if (nSol > 0) {
702
    // Swap first route to _transects.
703 704
    this->_variantVector.swap(solutionVector);

705
    // Add route variant names.
706 707 708
    this->_variantNames.clear();
    for (std::size_t i = 1; i <= std::size_t(this->_variantVector.size());
         ++i) {
709
      this->_variantNames.append(QString::number(i));
710
    }
711
    emit variantNamesChanged();
712

713 714
    // Swap in rawTransects.
    this->_rawTransects.swap(rawTransects);
715 716 717 718 719 720 721 722 723 724 725 726

    disconnect(&this->_variant, &Fact::rawValueChanged, this,
               &CircularSurvey::_changeVariant);
    disconnect(&this->_run, &Fact::rawValueChanged, this,
               &CircularSurvey::_changeRun);
    this->_variant.setCookedValue(QVariant(0));
    this->_run.setCookedValue(QVariant(0));
    connect(&this->_variant, &Fact::rawValueChanged, this,
            &CircularSurvey::_changeVariant);
    connect(&this->_run, &Fact::rawValueChanged, this,
            &CircularSurvey::_changeRun);
    this->_changeVariantRunWorker();
727 728
    // Mark transect as stored and ready.
    this->_transectsDirty = false;
729
  }
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
}

void CircularSurvey::applyNewAltitude(double newAltitude) {
  _cameraCalc.valueSetIsDistance()->setRawValue(true);
  _cameraCalc.distanceToSurface()->setRawValue(newAltitude);
  _cameraCalc.setDistanceToSurfaceRelative(true);
}

double CircularSurvey::timeBetweenShots() { return 1; }

QString CircularSurvey::commandDescription() const {
  return tr("Circular Survey");
}

QString CircularSurvey::commandName() const { return tr("Circular Survey"); }

QString CircularSurvey::abbreviation() const { return tr("C.S."); }

bool CircularSurvey::readyForSave() const {
  return TransectStyleComplexItem::readyForSave() && !_transectsDirty;
}

double CircularSurvey::additionalTimeDelay() const { return 0; }

void CircularSurvey::_rebuildTransectsPhase1(void) {
  auto start = std::chrono::high_resolution_clock::now();

  switch (this->_state) {
  case STATE::STORE:
759
    qCWarning(CircularSurveyLog) << "CS::rebuildTransectsPhase1: store.";
760 761 762
    this->_storeWorker();
    break;
  case STATE::VARIANT_CHANGE:
763 764
    qCWarning(CircularSurveyLog)
        << "CS::rebuildTransectsPhase1: variant change.";
765 766 767
    this->_changeVariantRunWorker();
    break;
  case STATE::RUN_CHANGE:
768
    qCWarning(CircularSurveyLog) << "CS::rebuildTransectsPhase1: run change.";
769
    this->_changeVariantRunWorker();
770 771
    break;
  case STATE::REVERSE:
772
    qCWarning(CircularSurveyLog) << "CS::rebuildTransectsPhase1: reverse.";
773 774 775
    this->_reverseWorker();
    break;
  case STATE::DEFAULT:
776
    qCWarning(CircularSurveyLog) << "CS::rebuildTransectsPhase1: update.";
777 778
    this->_updateWorker();
    break;
779
  }
780 781
  this->_state = STATE::DEFAULT;

782 783 784 785 786 787
  qCWarning(CircularSurveyLog)
      << "CS::rebuildTransectsPhase1(): "
      << std::chrono::duration_cast<std::chrono::milliseconds>(
             std::chrono::high_resolution_clock::now() - start)
             .count()
      << " ms";
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
}

void CircularSurvey::_recalcComplexDistance() {
  _complexDistance = 0;
  if (_transectsDirty)
    return;
  for (int i = 0; i < _visualTransectPoints.count() - 1; i++) {
    _complexDistance +=
        _visualTransectPoints[i].value<QGeoCoordinate>().distanceTo(
            _visualTransectPoints[i + 1].value<QGeoCoordinate>());
  }
  emit complexDistanceChanged();
}

// no cameraShots in Circular Survey, add if desired
void CircularSurvey::_recalcCameraShots() { _cameraShots = 0; }

805
void CircularSurvey::_setTransects(CircularSurvey::PtrRoutingData pRoute) {
806
  this->_pRoutingData = pRoute;
807
  this->_state = STATE::STORE;
808
  this->_rebuildTransects();
809 810
}

811 812 813 814
Fact *CircularSurvey::minLength() { return &_minLength; }

Fact *CircularSurvey::type() { return &_type; }

815 816
Fact *CircularSurvey::variant() { return &_variant; }

817 818 819 820
Fact *CircularSurvey::numRuns() { return &_numRuns; }

Fact *CircularSurvey::run() { return &_run; }

821
int CircularSurvey::typeCount() const { return int(integral(Type::Count)); }
822

823 824 825
bool CircularSurvey::calculating() const {
  return this->_pWorker->calculating();
}
826

827 828 829
bool circularTransects(const snake::FPolygon &polygon, snake::Length deltaR,
                       snake::Angle deltaAlpha, snake::Length minLength,
                       snake::Transects &transects) {
830
  auto s1 = std::chrono::high_resolution_clock::now();
831

832
  // Check preconitions
833
  if (polygon.outer().size() >= 3) {
834 835
    using namespace boost::units;
    // Convert geo polygon to ENU polygon.
836
    snake::FPoint origin{0, 0};
837 838
    std::string error;
    // Check validity.
839 840 841 842
    if (!bg::is_valid(polygon, error)) {
      qCWarning(CircularSurveyLog) << "CS::circularTransects(): "
                                      "invalid polygon.";
      qCWarning(CircularSurveyLog) << error.c_str();
843
      std::stringstream ss;
844 845
      ss << bg::wkt(polygon);
      qCWarning(CircularSurveyLog) << ss.str().c_str();
846 847 848
    } else {
      // Calculate polygon distances and angles.
      std::vector<snake::Length> distances;
849
      distances.reserve(polygon.outer().size());
850
      std::vector<snake::Angle> angles;
851
      angles.reserve(polygon.outer().size());
852
      //#ifdef DEBUG_CIRCULAR_SURVEY
853
      //      qCWarning(CircularSurveyLog) << "CS::circularTransects():";
854
      //#endif
855 856
      for (const auto &p : polygon.outer()) {
        snake::Length distance = bg::distance(origin, p) * si::meter;
857 858 859 860 861
        distances.push_back(distance);
        snake::Angle alpha = (std::atan2(p.get<1>(), p.get<0>())) * si::radian;
        alpha = alpha < 0 * si::radian ? alpha + 2 * M_PI * si::radian : alpha;
        angles.push_back(alpha);
        //#ifdef DEBUG_CIRCULAR_SURVEY
862 863 864 865 866 867
        //        qCWarning(CircularSurveyLog) << "distances, angles,
        //        coordinates:"; qCWarning(CircularSurveyLog) <<
        //        to_string(distance).c_str(); qCWarning(CircularSurveyLog) <<
        //        to_string(snake::Degree(alpha)).c_str();
        //        qCWarning(CircularSurveyLog) << "x = " << p.get<0>() << "y = "
        //        << p.get<1>();
868 869 870 871 872 873 874
        //#endif
      }

      auto rMin = deltaR; // minimal circle radius
      snake::Angle alpha1(0 * degree::degree);
      snake::Angle alpha2(360 * degree::degree);
      // Determine r_min by successive approximation
875 876
      if (!bg::within(origin, polygon.outer())) {
        rMin = bg::distance(origin, polygon) * si::meter;
877 878 879 880 881 882 883 884 885 886
      }

      auto rMax = (*std::max_element(distances.begin(),
                                     distances.end())); // maximal circle radius

      // Scale parameters and coordinates.
      const auto rMinScaled =
          ClipperLib::cInt(std::round(rMin.value() * CLIPPER_SCALE));
      const auto deltaRScaled =
          ClipperLib::cInt(std::round(deltaR.value() * CLIPPER_SCALE));
887 888 889
      auto originScaled =
          ClipperLib::IntPoint{ClipperLib::cInt(std::round(origin.get<0>())),
                               ClipperLib::cInt(std::round(origin.get<1>()))};
890 891 892 893 894 895 896 897

      // Generate circle sectors.
      auto rScaled = rMinScaled;
      const auto nTran = long(std::ceil(((rMax - rMin) / deltaR).value()));
      vector<ClipperLib::Path> sectors(nTran, ClipperLib::Path());
      const auto nSectors =
          long(std::round(((alpha2 - alpha1) / deltaAlpha).value()));
      //#ifdef DEBUG_CIRCULAR_SURVEY
898 899 900 901
      //      qCWarning(CircularSurveyLog) << "CS::circularTransects(): sector
      //      parameres:"; qCWarning(CircularSurveyLog) << "alpha1: " <<
      //      to_string(snake::Degree(alpha1)).c_str();
      //      qCWarning(CircularSurveyLog) << "alpha2:
902
      //      "
903 904 905 906 907 908 909 910
      //      << to_string(snake::Degree(alpha2)).c_str();
      //      qCWarning(CircularSurveyLog) << "n: "
      //      << to_string((alpha2 - alpha1) / deltaAlpha).c_str();
      //      qCWarning(CircularSurveyLog)
      //      << "nSectors: " << nSectors; qCWarning(CircularSurveyLog) <<
      //      "rMin: " << to_string(rMin).c_str(); qCWarning(CircularSurveyLog)
      //      << "rMax: " << to_string(rMax).c_str();
      //      qCWarning(CircularSurveyLog) << "nTran: " << nTran;
911 912 913 914 915 916 917 918 919 920
      //#endif
      using ClipperCircle =
          GenericCircle<ClipperLib::cInt, ClipperLib::IntPoint>;
      for (auto &sector : sectors) {
        ClipperCircle circle(rScaled, originScaled);
        approximate(circle, nSectors, sector);
        rScaled += deltaRScaled;
      }
      // Clip sectors to polygonENU.
      ClipperLib::Path polygonClipper;
921
      snake::FPolygon shrinked;
922
      snake::offsetPolygon(polygon, shrinked, -0.3);
923
      auto &outer = shrinked.outer();
924
      polygonClipper.reserve(outer.size());
925 926 927 928 929 930 931 932 933 934 935 936
      for (auto it = outer.begin(); it < outer.end() - 1; ++it) {
        auto x = ClipperLib::cInt(std::round(it->get<0>() * CLIPPER_SCALE));
        auto y = ClipperLib::cInt(std::round(it->get<1>() * CLIPPER_SCALE));
        polygonClipper.push_back(ClipperLib::IntPoint{x, y});
      }
      ClipperLib::Clipper clipper;
      clipper.AddPath(polygonClipper, ClipperLib::ptClip, true);
      clipper.AddPaths(sectors, ClipperLib::ptSubject, false);
      ClipperLib::PolyTree transectsClipper;
      clipper.Execute(ClipperLib::ctIntersection, transectsClipper,
                      ClipperLib::pftNonZero, ClipperLib::pftNonZero);

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
      // Subtract holes.
      if (polygon.inners().size() > 0) {
        vector<ClipperLib::Path> processedTiles;
        for (const auto &h : polygon.inners()) {
          ClipperLib::Path path;
          for (const auto &v : h) {
            path.push_back(ClipperLib::IntPoint{
                static_cast<ClipperLib::cInt>(v.get<0>() * CLIPPER_SCALE),
                static_cast<ClipperLib::cInt>(v.get<1>() * CLIPPER_SCALE)});
          }
          processedTiles.push_back(path);
        }

        clipper.Clear();
        for (const auto &child : transectsClipper.Childs) {
          clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
        }
        clipper.AddPaths(processedTiles, ClipperLib::ptClip, true);
        transectsClipper.Clear();
        clipper.Execute(ClipperLib::ctDifference, transectsClipper,
                        ClipperLib::pftNonZero, ClipperLib::pftNonZero);
      }

960 961 962
      // Extract transects from  PolyTree and convert them to
      // BoostLineString
      for (const auto &child : transectsClipper.Childs) {
963
        snake::FLineString transect;
964 965 966 967
        transect.reserve(child->Contour.size());
        for (const auto &vertex : child->Contour) {
          auto x = static_cast<double>(vertex.X) / CLIPPER_SCALE;
          auto y = static_cast<double>(vertex.Y) / CLIPPER_SCALE;
968
          transect.push_back(snake::FPoint(x, y));
969 970 971
        }
        transects.push_back(transect);
      }
972

973 974 975 976 977 978
      // Join sectors which where slit due to clipping.
      const double th = 0.01;
      for (auto ito = transects.begin(); ito < transects.end(); ++ito) {
        for (auto iti = ito + 1; iti < transects.end(); ++iti) {
          auto dist1 = bg::distance(ito->front(), iti->front());
          if (dist1 < th) {
979
            snake::FLineString temp;
980 981 982 983 984 985 986 987 988 989
            for (auto it = iti->end() - 1; it >= iti->begin(); --it) {
              temp.push_back(*it);
            }
            temp.insert(temp.end(), ito->begin(), ito->end());
            *ito = temp;
            transects.erase(iti);
            break;
          }
          auto dist2 = bg::distance(ito->front(), iti->back());
          if (dist2 < th) {
990
            snake::FLineString temp;
991 992 993 994 995 996 997 998
            temp.insert(temp.end(), iti->begin(), iti->end());
            temp.insert(temp.end(), ito->begin(), ito->end());
            *ito = temp;
            transects.erase(iti);
            break;
          }
          auto dist3 = bg::distance(ito->back(), iti->front());
          if (dist3 < th) {
999
            snake::FLineString temp;
1000 1001 1002 1003 1004 1005 1006 1007
            temp.insert(temp.end(), ito->begin(), ito->end());
            temp.insert(temp.end(), iti->begin(), iti->end());
            *ito = temp;
            transects.erase(iti);
            break;
          }
          auto dist4 = bg::distance(ito->back(), iti->back());
          if (dist4 < th) {
1008
            snake::FLineString temp;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
            temp.insert(temp.end(), ito->begin(), ito->end());
            for (auto it = iti->end() - 1; it >= iti->begin(); --it) {
              temp.push_back(*it);
            }
            *ito = temp;
            transects.erase(iti);
            break;
          }
        }
      }
1019

1020
      // Remove short transects
1021
      for (auto it = transects.begin(); it < transects.end();) {
1022 1023 1024 1025 1026 1027 1028
        if (bg::length(*it) < minLength.value()) {
          it = transects.erase(it);
        } else {
          ++it;
        }
      }

1029 1030 1031 1032 1033 1034
      qCWarning(CircularSurveyLog)
          << "CS::circularTransects(): transect gen. time: "
          << std::chrono::duration_cast<std::chrono::milliseconds>(
                 std::chrono::high_resolution_clock::now() - s1)
                 .count()
          << " ms";
1035 1036 1037 1038 1039
      return true;
    }
  }
  return false;
}
1040

1041 1042 1043
bool linearTransects(const snake::FPolygon &polygon, snake::Length distance,
                     snake::Angle angle, snake::Length minLength,
                     snake::Transects &transects) {
1044 1045
  namespace tr = bg::strategy::transform;
  auto s1 = std::chrono::high_resolution_clock::now();
1046

1047
  // Check preconitions
1048
  if (polygon.outer().size() >= 3) {
1049 1050 1051
    // Convert to ENU system.
    std::string error;
    // Check validity.
1052
    if (!bg::is_valid(polygon, error)) {
1053
      std::stringstream ss;
1054 1055 1056 1057 1058
      ss << bg::wkt(polygon);

      qCWarning(CircularSurveyLog) << "CS::circularTransects(): "
                                      "invalid polygon. "
                                   << error.c_str() << ss.str().c_str();
1059 1060 1061 1062
    } else {
      tr::rotate_transformer<bg::degree, double, 2, 2> rotate(angle.value() *
                                                              180 / M_PI);
      // Rotate polygon by angle and calculate bounding box.
1063
      snake::FPolygon polygonENURotated;
1064
      bg::transform(polygon.outer(), polygonENURotated.outer(), rotate);
1065
      snake::FBox box;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
      boost::geometry::envelope(polygonENURotated, box);
      double x0 = box.min_corner().get<0>();
      double y0 = box.min_corner().get<1>();
      double x1 = box.max_corner().get<0>();
      double y1 = box.max_corner().get<1>();

      // Generate transects and convert them to clipper path.
      size_t num_t = ceil((y1 - y0) / distance.value()); // number of transects
      vector<ClipperLib::Path> transectsClipper;
      transectsClipper.reserve(num_t);
      for (size_t i = 0; i < num_t; ++i) {
        // calculate transect
1078 1079 1080
        snake::FPoint v1{x0, y0 + i * distance.value()};
        snake::FPoint v2{x1, y0 + i * distance.value()};
        snake::FLineString transect;
1081 1082 1083
        transect.push_back(v1);
        transect.push_back(v2);
        // transform back
1084
        snake::FLineString temp_transect;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
        tr::rotate_transformer<bg::degree, double, 2, 2> rotate_back(
            -angle.value() * 180 / M_PI);
        bg::transform(transect, temp_transect, rotate_back);
        // to clipper
        ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(
                                    temp_transect[0].get<0>() * CLIPPER_SCALE),
                                static_cast<ClipperLib::cInt>(
                                    temp_transect[0].get<1>() * CLIPPER_SCALE)};
        ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(
                                    temp_transect[1].get<0>() * CLIPPER_SCALE),
                                static_cast<ClipperLib::cInt>(
                                    temp_transect[1].get<1>() * CLIPPER_SCALE)};
        ClipperLib::Path path{c1, c2};
        transectsClipper.push_back(path);
      }

      if (transectsClipper.size() == 0) {
        std::stringstream ss;
        ss << "Not able to generate transects. Parameter: distance = "
           << distance << std::endl;
1105 1106
        qCWarning(CircularSurveyLog)
            << "CircularSurvey::linearTransects(): " << ss.str().c_str();
1107 1108 1109 1110
        return false;
      }

      // Convert measurement area to clipper path.
1111
      snake::FPolygon shrinked;
1112
      snake::offsetPolygon(polygon, shrinked, -0.2);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
      auto &outer = shrinked.outer();
      ClipperLib::Path polygonClipper;
      for (auto vertex : outer) {
        polygonClipper.push_back(ClipperLib::IntPoint{
            static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
            static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
      }

      // Perform clipping.
      // Clip transects to measurement area.
      ClipperLib::Clipper clipper;
      clipper.AddPath(polygonClipper, ClipperLib::ptClip, true);
      clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
      ClipperLib::PolyTree clippedTransecs;
      clipper.Execute(ClipperLib::ctIntersection, clippedTransecs,
                      ClipperLib::pftNonZero, ClipperLib::pftNonZero);

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
      // Subtract holes.
      if (polygon.inners().size() > 0) {
        vector<ClipperLib::Path> processedTiles;
        for (const auto &h : polygon.inners()) {
          ClipperLib::Path path;
          for (const auto &v : h) {
            path.push_back(ClipperLib::IntPoint{
                static_cast<ClipperLib::cInt>(v.get<0>() * CLIPPER_SCALE),
                static_cast<ClipperLib::cInt>(v.get<1>() * CLIPPER_SCALE)});
          }
          processedTiles.push_back(path);
        }

        clipper.Clear();
        for (const auto &child : clippedTransecs.Childs) {
          clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
        }
        clipper.AddPaths(processedTiles, ClipperLib::ptClip, true);
        clippedTransecs.Clear();
        clipper.Execute(ClipperLib::ctDifference, clippedTransecs,
                        ClipperLib::pftNonZero, ClipperLib::pftNonZero);
1151
      }
1152 1153

      // Extract transects from  PolyTree and convert them to BoostLineString
1154 1155
      for (const auto &child : clippedTransecs.Childs) {
        const auto &clipperTransect = child->Contour;
1156
        snake::FPoint v1{
1157 1158
            static_cast<double>(clipperTransect[0].X) / CLIPPER_SCALE,
            static_cast<double>(clipperTransect[0].Y) / CLIPPER_SCALE};
1159
        snake::FPoint v2{
1160 1161 1162
            static_cast<double>(clipperTransect[1].X) / CLIPPER_SCALE,
            static_cast<double>(clipperTransect[1].Y) / CLIPPER_SCALE};

1163
        snake::FLineString transect{v1, v2};
1164 1165 1166 1167 1168 1169 1170 1171 1172
        if (bg::length(transect) >= minLength.value()) {
          transects.push_back(transect);
        }
      }

      if (transects.size() == 0) {
        std::stringstream ss;
        ss << "Not able to generate transects. Parameter: minLength = "
           << minLength << std::endl;
1173 1174
        qCWarning(CircularSurveyLog)
            << "CircularSurvey::linearTransects(): " << ss.str().c_str();
1175 1176
        return false;
      }
1177 1178 1179 1180 1181 1182
      qCWarning(CircularSurveyLog)
          << "CS::circularTransects(): transect gen. time: "
          << std::chrono::duration_cast<std::chrono::milliseconds>(
                 std::chrono::high_resolution_clock::now() - s1)
                 .count()
          << " ms";
1183 1184 1185 1186 1187
      return true;
    }
  }
  return false;
}
1188 1189 1190 1191
/*!
    \class CircularSurveyComplexItem
    \inmodule Wima

1192 1193
    \brief The \c CircularSurveyComplexItem class provides a survey mission
   item with circular transects around a point of interest.
1194

1195 1196 1197 1198
    CircularSurveyComplexItem class provides a survey mission item with
   circular transects around a point of interest. Within the \c Wima module
   it's used to scan a defined area with constant angle (circular transects)
   to the base station (point of interest).
1199 1200 1201

    \sa WimaArea
*/