Scaling.h 6.18 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_SCALING_H
#define EIGEN_SCALING_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen { 

LM's avatar
LM committed
15 16 17 18 19 20
/** \geometry_module \ingroup Geometry_Module
  *
  * \class Scaling
  *
  * \brief Represents a generic uniform scaling transformation
  *
21
  * \tparam _Scalar the scalar type, i.e., the type of the coefficients.
LM's avatar
LM committed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
  *
  * This class represent a uniform scaling transformation. It is the return
  * type of Scaling(Scalar), and most of the time this is the only way it
  * is used. In particular, this class is not aimed to be used to store a scaling transformation,
  * but rather to make easier the constructions and updates of Transform objects.
  *
  * To represent an axis aligned scaling, use the DiagonalMatrix class.
  *
  * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform
  */
template<typename _Scalar>
class UniformScaling
{
public:
  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;

protected:

  Scalar m_factor;

public:

  /** Default constructor without initialization. */
  UniformScaling() {}
  /** Constructs and initialize a uniform scaling transformation */
  explicit inline UniformScaling(const Scalar& s) : m_factor(s) {}

  inline const Scalar& factor() const { return m_factor; }
  inline Scalar& factor() { return m_factor; }

  /** Concatenates two uniform scaling */
  inline UniformScaling operator* (const UniformScaling& other) const
  { return UniformScaling(m_factor * other.factor()); }

  /** Concatenates a uniform scaling and a translation */
  template<int Dim>
  inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const;

  /** Concatenates a uniform scaling and an affine transformation */
  template<int Dim, int Mode, int Options>
Don Gagne's avatar
Don Gagne committed
63 64
  inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const
  {
65 66 67 68
    Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t;
    res.prescale(factor());
    return res;
  }
LM's avatar
LM committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

  /** Concatenates a uniform scaling and a linear transformation matrix */
  // TODO returns an expression
  template<typename Derived>
  inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const
  { return other * m_factor; }

  template<typename Derived,int Dim>
  inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const
  { return r.toRotationMatrix() * m_factor; }

  /** \returns the inverse scaling */
  inline UniformScaling inverse() const
  { return UniformScaling(Scalar(1)/m_factor); }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline UniformScaling<NewScalarType> cast() const
  { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other)
  { m_factor = Scalar(other.factor()); }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
Don Gagne's avatar
Don Gagne committed
102
  bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
LM's avatar
LM committed
103 104 105 106
  { return internal::isApprox(m_factor, other.factor(), prec); }

};

107 108 109 110 111 112
/** \addtogroup Geometry_Module */
//@{

/** Concatenates a linear transformation matrix and a uniform scaling
  * \relates UniformScaling
  */
LM's avatar
LM committed
113 114
// NOTE this operator is defiend in MatrixBase and not as a friend function
// of UniformScaling to fix an internal crash of Intel's ICC
115 116 117 118
template<typename Derived,typename Scalar>
EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,Scalar,product)
operator*(const MatrixBase<Derived>& matrix, const UniformScaling<Scalar>& s)
{ return matrix.derived() * s.factor(); }
LM's avatar
LM committed
119 120

/** Constructs a uniform scaling from scale factor \a s */
121
inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
LM's avatar
LM committed
122
/** Constructs a uniform scaling from scale factor \a s */
123
inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
LM's avatar
LM committed
124 125
/** Constructs a uniform scaling from scale factor \a s */
template<typename RealScalar>
126
inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
LM's avatar
LM committed
127 128 129 130
{ return UniformScaling<std::complex<RealScalar> >(s); }

/** Constructs a 2D axis aligned scaling */
template<typename Scalar>
131
inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy)
LM's avatar
LM committed
132 133 134
{ return DiagonalMatrix<Scalar,2>(sx, sy); }
/** Constructs a 3D axis aligned scaling */
template<typename Scalar>
135
inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
LM's avatar
LM committed
136 137 138 139 140 141
{ return DiagonalMatrix<Scalar,3>(sx, sy, sz); }

/** Constructs an axis aligned scaling expression from vector expression \a coeffs
  * This is an alias for coeffs.asDiagonal()
  */
template<typename Derived>
142
inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
LM's avatar
LM committed
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
{ return coeffs.asDiagonal(); }

/** \deprecated */
typedef DiagonalMatrix<float, 2> AlignedScaling2f;
/** \deprecated */
typedef DiagonalMatrix<double,2> AlignedScaling2d;
/** \deprecated */
typedef DiagonalMatrix<float, 3> AlignedScaling3f;
/** \deprecated */
typedef DiagonalMatrix<double,3> AlignedScaling3d;
//@}

template<typename Scalar>
template<int Dim>
inline Transform<Scalar,Dim,Affine>
UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const
{
  Transform<Scalar,Dim,Affine> res;
  res.matrix().setZero();
  res.linear().diagonal().fill(factor());
  res.translation() = factor() * t.vector();
  res(Dim,Dim) = Scalar(1);
  return res;
}

Don Gagne's avatar
Don Gagne committed
168
} // end namespace Eigen
LM's avatar
LM committed
169 170

#endif // EIGEN_SCALING_H