Inverse_SSE.h 13.5 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2001 Intel Corporation
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

// The SSE code for the 4x4 float and double matrix inverse in this file
// comes from the following Intel's library:
// http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/
//
// Here is the respective copyright and license statement:
//
//   Copyright (c) 2001 Intel Corporation.
//
// Permition is granted to use, copy, distribute and prepare derivative works
// of this library for any purpose and without fee, provided, that the above
// copyright notice and this statement appear in all copies.
// Intel makes no representations about the suitability of this software for
// any purpose, and specifically disclaims all warranties.
// See LEGAL.TXT for all the legal information.

#ifndef EIGEN_INVERSE_SSE_H
#define EIGEN_INVERSE_SSE_H

namespace internal {

template<typename MatrixType, typename ResultType>
struct compute_inverse_size4<Architecture::SSE, float, MatrixType, ResultType>
{
  enum {
    MatrixAlignment     = bool(MatrixType::Flags&AlignedBit),
    ResultAlignment     = bool(ResultType::Flags&AlignedBit),
    StorageOrdersMatch  = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit)
  };
  
  static void run(const MatrixType& matrix, ResultType& result)
  {
    EIGEN_ALIGN16 const  int _Sign_PNNP[4] = { 0x00000000, 0x80000000, 0x80000000, 0x00000000 };

    // Load the full matrix into registers
    __m128 _L1 = matrix.template packet<MatrixAlignment>( 0);
    __m128 _L2 = matrix.template packet<MatrixAlignment>( 4);
    __m128 _L3 = matrix.template packet<MatrixAlignment>( 8);
    __m128 _L4 = matrix.template packet<MatrixAlignment>(12);

    // The inverse is calculated using "Divide and Conquer" technique. The
    // original matrix is divide into four 2x2 sub-matrices. Since each
    // register holds four matrix element, the smaller matrices are
    // represented as a registers. Hence we get a better locality of the
    // calculations.

    __m128 A, B, C, D; // the four sub-matrices
    if(!StorageOrdersMatch)
    {
      A = _mm_unpacklo_ps(_L1, _L2);
      B = _mm_unpacklo_ps(_L3, _L4);
      C = _mm_unpackhi_ps(_L1, _L2);
      D = _mm_unpackhi_ps(_L3, _L4);
    }
    else
    {
      A = _mm_movelh_ps(_L1, _L2);
      B = _mm_movehl_ps(_L2, _L1);
      C = _mm_movelh_ps(_L3, _L4);
      D = _mm_movehl_ps(_L4, _L3);
    }

    __m128 iA, iB, iC, iD,                 // partial inverse of the sub-matrices
            DC, AB;
    __m128 dA, dB, dC, dD;                 // determinant of the sub-matrices
    __m128 det, d, d1, d2;
    __m128 rd;                             // reciprocal of the determinant

    //  AB = A# * B
    AB = _mm_mul_ps(_mm_shuffle_ps(A,A,0x0F), B);
    AB = _mm_sub_ps(AB,_mm_mul_ps(_mm_shuffle_ps(A,A,0xA5), _mm_shuffle_ps(B,B,0x4E)));
    //  DC = D# * C
    DC = _mm_mul_ps(_mm_shuffle_ps(D,D,0x0F), C);
    DC = _mm_sub_ps(DC,_mm_mul_ps(_mm_shuffle_ps(D,D,0xA5), _mm_shuffle_ps(C,C,0x4E)));

    //  dA = |A|
    dA = _mm_mul_ps(_mm_shuffle_ps(A, A, 0x5F),A);
    dA = _mm_sub_ss(dA, _mm_movehl_ps(dA,dA));
    //  dB = |B|
    dB = _mm_mul_ps(_mm_shuffle_ps(B, B, 0x5F),B);
    dB = _mm_sub_ss(dB, _mm_movehl_ps(dB,dB));

    //  dC = |C|
    dC = _mm_mul_ps(_mm_shuffle_ps(C, C, 0x5F),C);
    dC = _mm_sub_ss(dC, _mm_movehl_ps(dC,dC));
    //  dD = |D|
    dD = _mm_mul_ps(_mm_shuffle_ps(D, D, 0x5F),D);
    dD = _mm_sub_ss(dD, _mm_movehl_ps(dD,dD));

    //  d = trace(AB*DC) = trace(A#*B*D#*C)
    d = _mm_mul_ps(_mm_shuffle_ps(DC,DC,0xD8),AB);

    //  iD = C*A#*B
    iD = _mm_mul_ps(_mm_shuffle_ps(C,C,0xA0), _mm_movelh_ps(AB,AB));
    iD = _mm_add_ps(iD,_mm_mul_ps(_mm_shuffle_ps(C,C,0xF5), _mm_movehl_ps(AB,AB)));
    //  iA = B*D#*C
    iA = _mm_mul_ps(_mm_shuffle_ps(B,B,0xA0), _mm_movelh_ps(DC,DC));
    iA = _mm_add_ps(iA,_mm_mul_ps(_mm_shuffle_ps(B,B,0xF5), _mm_movehl_ps(DC,DC)));

    //  d = trace(AB*DC) = trace(A#*B*D#*C) [continue]
    d  = _mm_add_ps(d, _mm_movehl_ps(d, d));
    d  = _mm_add_ss(d, _mm_shuffle_ps(d, d, 1));
    d1 = _mm_mul_ss(dA,dD);
    d2 = _mm_mul_ss(dB,dC);

    //  iD = D*|A| - C*A#*B
    iD = _mm_sub_ps(_mm_mul_ps(D,_mm_shuffle_ps(dA,dA,0)), iD);

    //  iA = A*|D| - B*D#*C;
    iA = _mm_sub_ps(_mm_mul_ps(A,_mm_shuffle_ps(dD,dD,0)), iA);

    //  det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C)
    det = _mm_sub_ss(_mm_add_ss(d1,d2),d);
    rd  = _mm_div_ss(_mm_set_ss(1.0f), det);

//     #ifdef ZERO_SINGULAR
//         rd = _mm_and_ps(_mm_cmpneq_ss(det,_mm_setzero_ps()), rd);
//     #endif

    //  iB = D * (A#B)# = D*B#*A
    iB = _mm_mul_ps(D, _mm_shuffle_ps(AB,AB,0x33));
    iB = _mm_sub_ps(iB, _mm_mul_ps(_mm_shuffle_ps(D,D,0xB1), _mm_shuffle_ps(AB,AB,0x66)));
    //  iC = A * (D#C)# = A*C#*D
    iC = _mm_mul_ps(A, _mm_shuffle_ps(DC,DC,0x33));
    iC = _mm_sub_ps(iC, _mm_mul_ps(_mm_shuffle_ps(A,A,0xB1), _mm_shuffle_ps(DC,DC,0x66)));

    rd = _mm_shuffle_ps(rd,rd,0);
    rd = _mm_xor_ps(rd, _mm_load_ps((float*)_Sign_PNNP));

    //  iB = C*|B| - D*B#*A
    iB = _mm_sub_ps(_mm_mul_ps(C,_mm_shuffle_ps(dB,dB,0)), iB);

    //  iC = B*|C| - A*C#*D;
    iC = _mm_sub_ps(_mm_mul_ps(B,_mm_shuffle_ps(dC,dC,0)), iC);

    //  iX = iX / det
    iA = _mm_mul_ps(rd,iA);
    iB = _mm_mul_ps(rd,iB);
    iC = _mm_mul_ps(rd,iC);
    iD = _mm_mul_ps(rd,iD);

    result.template writePacket<ResultAlignment>( 0, _mm_shuffle_ps(iA,iB,0x77));
    result.template writePacket<ResultAlignment>( 4, _mm_shuffle_ps(iA,iB,0x22));
    result.template writePacket<ResultAlignment>( 8, _mm_shuffle_ps(iC,iD,0x77));
    result.template writePacket<ResultAlignment>(12, _mm_shuffle_ps(iC,iD,0x22));
  }

};

template<typename MatrixType, typename ResultType>
struct compute_inverse_size4<Architecture::SSE, double, MatrixType, ResultType>
{
  enum {
    MatrixAlignment = bool(MatrixType::Flags&AlignedBit),
    ResultAlignment = bool(ResultType::Flags&AlignedBit),
    StorageOrdersMatch  = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit)
  };
  static void run(const MatrixType& matrix, ResultType& result)
  {
    const EIGEN_ALIGN16 long long int _Sign_NP[2] = { 0x8000000000000000ll, 0x0000000000000000ll };
    const EIGEN_ALIGN16 long long int _Sign_PN[2] = { 0x0000000000000000ll, 0x8000000000000000ll };

    // The inverse is calculated using "Divide and Conquer" technique. The
    // original matrix is divide into four 2x2 sub-matrices. Since each
    // register of the matrix holds two element, the smaller matrices are
    // consisted of two registers. Hence we get a better locality of the
    // calculations.

    // the four sub-matrices
    __m128d A1, A2, B1, B2, C1, C2, D1, D2;
    
    if(StorageOrdersMatch)
    {
      A1 = matrix.template packet<MatrixAlignment>( 0); B1 = matrix.template packet<MatrixAlignment>( 2);
      A2 = matrix.template packet<MatrixAlignment>( 4); B2 = matrix.template packet<MatrixAlignment>( 6);
      C1 = matrix.template packet<MatrixAlignment>( 8); D1 = matrix.template packet<MatrixAlignment>(10);
      C2 = matrix.template packet<MatrixAlignment>(12); D2 = matrix.template packet<MatrixAlignment>(14);
    }
    else
    {
      __m128d tmp;
      A1 = matrix.template packet<MatrixAlignment>( 0); C1 = matrix.template packet<MatrixAlignment>( 2);
      A2 = matrix.template packet<MatrixAlignment>( 4); C2 = matrix.template packet<MatrixAlignment>( 6);
      tmp = A1;
      A1 = _mm_unpacklo_pd(A1,A2);
      A2 = _mm_unpackhi_pd(tmp,A2);
      tmp = C1;
      C1 = _mm_unpacklo_pd(C1,C2);
      C2 = _mm_unpackhi_pd(tmp,C2);
      
      B1 = matrix.template packet<MatrixAlignment>( 8); D1 = matrix.template packet<MatrixAlignment>(10);
      B2 = matrix.template packet<MatrixAlignment>(12); D2 = matrix.template packet<MatrixAlignment>(14);
      tmp = B1;
      B1 = _mm_unpacklo_pd(B1,B2);
      B2 = _mm_unpackhi_pd(tmp,B2);
      tmp = D1;
      D1 = _mm_unpacklo_pd(D1,D2);
      D2 = _mm_unpackhi_pd(tmp,D2);
    }
    
    __m128d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2,     // partial invese of the sub-matrices
            DC1, DC2, AB1, AB2;
    __m128d dA, dB, dC, dD;     // determinant of the sub-matrices
    __m128d det, d1, d2, rd;

    //  dA = |A|
    dA = _mm_shuffle_pd(A2, A2, 1);
    dA = _mm_mul_pd(A1, dA);
    dA = _mm_sub_sd(dA, _mm_shuffle_pd(dA,dA,3));
    //  dB = |B|
    dB = _mm_shuffle_pd(B2, B2, 1);
    dB = _mm_mul_pd(B1, dB);
    dB = _mm_sub_sd(dB, _mm_shuffle_pd(dB,dB,3));

    //  AB = A# * B
    AB1 = _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,3));
    AB2 = _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,0));
    AB1 = _mm_sub_pd(AB1, _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,3)));
    AB2 = _mm_sub_pd(AB2, _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,0)));

    //  dC = |C|
    dC = _mm_shuffle_pd(C2, C2, 1);
    dC = _mm_mul_pd(C1, dC);
    dC = _mm_sub_sd(dC, _mm_shuffle_pd(dC,dC,3));
    //  dD = |D|
    dD = _mm_shuffle_pd(D2, D2, 1);
    dD = _mm_mul_pd(D1, dD);
    dD = _mm_sub_sd(dD, _mm_shuffle_pd(dD,dD,3));

    //  DC = D# * C
    DC1 = _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,3));
    DC2 = _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,0));
    DC1 = _mm_sub_pd(DC1, _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,3)));
    DC2 = _mm_sub_pd(DC2, _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,0)));

    //  rd = trace(AB*DC) = trace(A#*B*D#*C)
    d1 = _mm_mul_pd(AB1, _mm_shuffle_pd(DC1, DC2, 0));
    d2 = _mm_mul_pd(AB2, _mm_shuffle_pd(DC1, DC2, 3));
    rd = _mm_add_pd(d1, d2);
    rd = _mm_add_sd(rd, _mm_shuffle_pd(rd, rd,3));

    //  iD = C*A#*B
    iD1 = _mm_mul_pd(AB1, _mm_shuffle_pd(C1,C1,0));
    iD2 = _mm_mul_pd(AB1, _mm_shuffle_pd(C2,C2,0));
    iD1 = _mm_add_pd(iD1, _mm_mul_pd(AB2, _mm_shuffle_pd(C1,C1,3)));
    iD2 = _mm_add_pd(iD2, _mm_mul_pd(AB2, _mm_shuffle_pd(C2,C2,3)));

    //  iA = B*D#*C
    iA1 = _mm_mul_pd(DC1, _mm_shuffle_pd(B1,B1,0));
    iA2 = _mm_mul_pd(DC1, _mm_shuffle_pd(B2,B2,0));
    iA1 = _mm_add_pd(iA1, _mm_mul_pd(DC2, _mm_shuffle_pd(B1,B1,3)));
    iA2 = _mm_add_pd(iA2, _mm_mul_pd(DC2, _mm_shuffle_pd(B2,B2,3)));

    //  iD = D*|A| - C*A#*B
    dA = _mm_shuffle_pd(dA,dA,0);
    iD1 = _mm_sub_pd(_mm_mul_pd(D1, dA), iD1);
    iD2 = _mm_sub_pd(_mm_mul_pd(D2, dA), iD2);

    //  iA = A*|D| - B*D#*C;
    dD = _mm_shuffle_pd(dD,dD,0);
    iA1 = _mm_sub_pd(_mm_mul_pd(A1, dD), iA1);
    iA2 = _mm_sub_pd(_mm_mul_pd(A2, dD), iA2);

    d1 = _mm_mul_sd(dA, dD);
    d2 = _mm_mul_sd(dB, dC);

    //  iB = D * (A#B)# = D*B#*A
    iB1 = _mm_mul_pd(D1, _mm_shuffle_pd(AB2,AB1,1));
    iB2 = _mm_mul_pd(D2, _mm_shuffle_pd(AB2,AB1,1));
    iB1 = _mm_sub_pd(iB1, _mm_mul_pd(_mm_shuffle_pd(D1,D1,1), _mm_shuffle_pd(AB2,AB1,2)));
    iB2 = _mm_sub_pd(iB2, _mm_mul_pd(_mm_shuffle_pd(D2,D2,1), _mm_shuffle_pd(AB2,AB1,2)));

    //  det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C)
    det = _mm_add_sd(d1, d2);
    det = _mm_sub_sd(det, rd);

    //  iC = A * (D#C)# = A*C#*D
    iC1 = _mm_mul_pd(A1, _mm_shuffle_pd(DC2,DC1,1));
    iC2 = _mm_mul_pd(A2, _mm_shuffle_pd(DC2,DC1,1));
    iC1 = _mm_sub_pd(iC1, _mm_mul_pd(_mm_shuffle_pd(A1,A1,1), _mm_shuffle_pd(DC2,DC1,2)));
    iC2 = _mm_sub_pd(iC2, _mm_mul_pd(_mm_shuffle_pd(A2,A2,1), _mm_shuffle_pd(DC2,DC1,2)));

    rd = _mm_div_sd(_mm_set_sd(1.0), det);
//     #ifdef ZERO_SINGULAR
//         rd = _mm_and_pd(_mm_cmpneq_sd(det,_mm_setzero_pd()), rd);
//     #endif
    rd = _mm_shuffle_pd(rd,rd,0);

    //  iB = C*|B| - D*B#*A
    dB = _mm_shuffle_pd(dB,dB,0);
    iB1 = _mm_sub_pd(_mm_mul_pd(C1, dB), iB1);
    iB2 = _mm_sub_pd(_mm_mul_pd(C2, dB), iB2);

    d1 = _mm_xor_pd(rd, _mm_load_pd((double*)_Sign_PN));
    d2 = _mm_xor_pd(rd, _mm_load_pd((double*)_Sign_NP));

    //  iC = B*|C| - A*C#*D;
    dC = _mm_shuffle_pd(dC,dC,0);
    iC1 = _mm_sub_pd(_mm_mul_pd(B1, dC), iC1);
    iC2 = _mm_sub_pd(_mm_mul_pd(B2, dC), iC2);

    result.template writePacket<ResultAlignment>( 0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1));     // iA# / det
    result.template writePacket<ResultAlignment>( 4, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2));
    result.template writePacket<ResultAlignment>( 2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1));     // iB# / det
    result.template writePacket<ResultAlignment>( 6, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2));
    result.template writePacket<ResultAlignment>( 8, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1));     // iC# / det
    result.template writePacket<ResultAlignment>(12, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2));
    result.template writePacket<ResultAlignment>(10, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1));     // iD# / det
    result.template writePacket<ResultAlignment>(14, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2));
  }
};

}

#endif // EIGEN_INVERSE_SSE_H