Transpose.h 14.8 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_TRANSPOSE_H
#define EIGEN_TRANSPOSE_H

/** \class Transpose
  * \ingroup Core_Module
  *
  * \brief Expression of the transpose of a matrix
  *
  * \param MatrixType the type of the object of which we are taking the transpose
  *
  * This class represents an expression of the transpose of a matrix.
  * It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
  * and most of the time this is the only way it is used.
  *
  * \sa MatrixBase::transpose(), MatrixBase::adjoint()
  */

namespace internal {
template<typename MatrixType>
struct traits<Transpose<MatrixType> > : traits<MatrixType>
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename nested<MatrixType>::type MatrixTypeNested;
  typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedPlain;
  typedef typename traits<MatrixType>::StorageKind StorageKind;
  typedef typename traits<MatrixType>::XprKind XprKind;
  enum {
    RowsAtCompileTime = MatrixType::ColsAtCompileTime,
    ColsAtCompileTime = MatrixType::RowsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
    Flags0 = MatrixTypeNestedPlain::Flags & ~(LvalueBit | NestByRefBit),
    Flags1 = Flags0 | FlagsLvalueBit,
    Flags = Flags1 ^ RowMajorBit,
    CoeffReadCost = MatrixTypeNestedPlain::CoeffReadCost,
    InnerStrideAtCompileTime = inner_stride_at_compile_time<MatrixType>::ret,
    OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret
  };
};
}

template<typename MatrixType, typename StorageKind> class TransposeImpl;

template<typename MatrixType> class Transpose
  : public TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>
{
  public:

    typedef typename TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
    EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)

    inline Transpose(MatrixType& matrix) : m_matrix(matrix) {}

    EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)

    inline Index rows() const { return m_matrix.cols(); }
    inline Index cols() const { return m_matrix.rows(); }

    /** \returns the nested expression */
    const typename internal::remove_all<typename MatrixType::Nested>::type&
    nestedExpression() const { return m_matrix; }

    /** \returns the nested expression */
    typename internal::remove_all<typename MatrixType::Nested>::type&
    nestedExpression() { return m_matrix.const_cast_derived(); }

  protected:
    const typename MatrixType::Nested m_matrix;
};

namespace internal {

template<typename MatrixType, bool HasDirectAccess = has_direct_access<MatrixType>::ret>
struct TransposeImpl_base
{
  typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
};

template<typename MatrixType>
struct TransposeImpl_base<MatrixType, false>
{
  typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
};

} // end namespace internal

template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
  : public internal::TransposeImpl_base<MatrixType>::type
{
  public:

    typedef typename internal::TransposeImpl_base<MatrixType>::type Base;
    EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>)

    inline Index innerStride() const { return derived().nestedExpression().innerStride(); }
    inline Index outerStride() const { return derived().nestedExpression().outerStride(); }

    typedef typename internal::conditional<
                       internal::is_lvalue<MatrixType>::value,
                       Scalar,
                       const Scalar
                     >::type ScalarWithConstIfNotLvalue;

    inline ScalarWithConstIfNotLvalue* data() { return derived().nestedExpression().data(); }
    inline const Scalar* data() const { return derived().nestedExpression().data(); }

    inline ScalarWithConstIfNotLvalue& coeffRef(Index row, Index col)
    {
      EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
      return derived().nestedExpression().const_cast_derived().coeffRef(col, row);
    }

    inline ScalarWithConstIfNotLvalue& coeffRef(Index index)
    {
      EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
      return derived().nestedExpression().const_cast_derived().coeffRef(index);
    }

    inline const Scalar& coeffRef(Index row, Index col) const
    {
      return derived().nestedExpression().coeffRef(col, row);
    }

    inline const Scalar& coeffRef(Index index) const
    {
      return derived().nestedExpression().coeffRef(index);
    }

    inline const CoeffReturnType coeff(Index row, Index col) const
    {
      return derived().nestedExpression().coeff(col, row);
    }

    inline const CoeffReturnType coeff(Index index) const
    {
      return derived().nestedExpression().coeff(index);
    }

    template<int LoadMode>
    inline const PacketScalar packet(Index row, Index col) const
    {
      return derived().nestedExpression().template packet<LoadMode>(col, row);
    }

    template<int LoadMode>
    inline void writePacket(Index row, Index col, const PacketScalar& x)
    {
      derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(col, row, x);
    }

    template<int LoadMode>
    inline const PacketScalar packet(Index index) const
    {
      return derived().nestedExpression().template packet<LoadMode>(index);
    }

    template<int LoadMode>
    inline void writePacket(Index index, const PacketScalar& x)
    {
      derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(index, x);
    }
};

/** \returns an expression of the transpose of *this.
  *
  * Example: \include MatrixBase_transpose.cpp
  * Output: \verbinclude MatrixBase_transpose.out
  *
  * \warning If you want to replace a matrix by its own transpose, do \b NOT do this:
  * \code
  * m = m.transpose(); // bug!!! caused by aliasing effect
  * \endcode
  * Instead, use the transposeInPlace() method:
  * \code
  * m.transposeInPlace();
  * \endcode
  * which gives Eigen good opportunities for optimization, or alternatively you can also do:
  * \code
  * m = m.transpose().eval();
  * \endcode
  *
  * \sa transposeInPlace(), adjoint() */
template<typename Derived>
inline Transpose<Derived>
DenseBase<Derived>::transpose()
{
  return derived();
}

/** This is the const version of transpose().
  *
  * Make sure you read the warning for transpose() !
  *
  * \sa transposeInPlace(), adjoint() */
template<typename Derived>
inline const typename DenseBase<Derived>::ConstTransposeReturnType
DenseBase<Derived>::transpose() const
{
  return ConstTransposeReturnType(derived());
}

/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
  *
  * Example: \include MatrixBase_adjoint.cpp
  * Output: \verbinclude MatrixBase_adjoint.out
  *
  * \warning If you want to replace a matrix by its own adjoint, do \b NOT do this:
  * \code
  * m = m.adjoint(); // bug!!! caused by aliasing effect
  * \endcode
  * Instead, use the adjointInPlace() method:
  * \code
  * m.adjointInPlace();
  * \endcode
  * which gives Eigen good opportunities for optimization, or alternatively you can also do:
  * \code
  * m = m.adjoint().eval();
  * \endcode
  *
  * \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op */
template<typename Derived>
inline const typename MatrixBase<Derived>::AdjointReturnType
MatrixBase<Derived>::adjoint() const
{
  return this->transpose(); // in the complex case, the .conjugate() is be implicit here
                            // due to implicit conversion to return type
}

/***************************************************************************
* "in place" transpose implementation
***************************************************************************/

namespace internal {

template<typename MatrixType,
  bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic>
struct inplace_transpose_selector;

template<typename MatrixType>
struct inplace_transpose_selector<MatrixType,true> { // square matrix
  static void run(MatrixType& m) {
    m.template triangularView<StrictlyUpper>().swap(m.transpose());
  }
};

template<typename MatrixType>
struct inplace_transpose_selector<MatrixType,false> { // non square matrix
  static void run(MatrixType& m) {
    if (m.rows()==m.cols())
      m.template triangularView<StrictlyUpper>().swap(m.transpose());
    else
      m = m.transpose().eval();
  }
};

} // end namespace internal

/** This is the "in place" version of transpose(): it replaces \c *this by its own transpose.
  * Thus, doing
  * \code
  * m.transposeInPlace();
  * \endcode
  * has the same effect on m as doing
  * \code
  * m = m.transpose().eval();
  * \endcode
  * and is faster and also safer because in the latter line of code, forgetting the eval() results
  * in a bug caused by aliasing.
  *
  * Notice however that this method is only useful if you want to replace a matrix by its own transpose.
  * If you just need the transpose of a matrix, use transpose().
  *
  * \note if the matrix is not square, then \c *this must be a resizable matrix.
  *
  * \sa transpose(), adjoint(), adjointInPlace() */
template<typename Derived>
inline void DenseBase<Derived>::transposeInPlace()
{
  internal::inplace_transpose_selector<Derived>::run(derived());
}

/***************************************************************************
* "in place" adjoint implementation
***************************************************************************/

/** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose.
  * Thus, doing
  * \code
  * m.adjointInPlace();
  * \endcode
  * has the same effect on m as doing
  * \code
  * m = m.adjoint().eval();
  * \endcode
  * and is faster and also safer because in the latter line of code, forgetting the eval() results
  * in a bug caused by aliasing.
  *
  * Notice however that this method is only useful if you want to replace a matrix by its own adjoint.
  * If you just need the adjoint of a matrix, use adjoint().
  *
  * \note if the matrix is not square, then \c *this must be a resizable matrix.
  *
  * \sa transpose(), adjoint(), transposeInPlace() */
template<typename Derived>
inline void MatrixBase<Derived>::adjointInPlace()
{
  derived() = adjoint().eval();
}

#ifndef EIGEN_NO_DEBUG

// The following is to detect aliasing problems in most common cases.

namespace internal {

template<typename BinOp,typename NestedXpr,typename Rhs>
struct blas_traits<SelfCwiseBinaryOp<BinOp,NestedXpr,Rhs> >
 : blas_traits<NestedXpr>
{
  typedef SelfCwiseBinaryOp<BinOp,NestedXpr,Rhs> XprType;
  static inline const XprType extract(const XprType& x) { return x; }
};

template<bool DestIsTransposed, typename OtherDerived>
struct check_transpose_aliasing_compile_time_selector
{
  enum { ret = blas_traits<OtherDerived>::IsTransposed != DestIsTransposed
  };
};

template<bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
struct check_transpose_aliasing_compile_time_selector<DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
{
  enum { ret =    blas_traits<DerivedA>::IsTransposed != DestIsTransposed
               || blas_traits<DerivedB>::IsTransposed != DestIsTransposed
  };
};

template<typename Scalar, bool DestIsTransposed, typename OtherDerived>
struct check_transpose_aliasing_run_time_selector
{
  static bool run(const Scalar* dest, const OtherDerived& src)
  {
    return (blas_traits<OtherDerived>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(Scalar*)extract_data(src));
  }
};

template<typename Scalar, bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
struct check_transpose_aliasing_run_time_selector<Scalar,DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
{
  static bool run(const Scalar* dest, const CwiseBinaryOp<BinOp,DerivedA,DerivedB>& src)
  {
    return ((blas_traits<DerivedA>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(Scalar*)extract_data(src.lhs())))
        || ((blas_traits<DerivedB>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(Scalar*)extract_data(src.rhs())));
  }
};

// the following selector, checkTransposeAliasing_impl, based on MightHaveTransposeAliasing,
// is because when the condition controlling the assert is known at compile time, ICC emits a warning.
// This is actually a good warning: in expressions that don't have any transposing, the condition is
// known at compile time to be false, and using that, we can avoid generating the code of the assert again
// and again for all these expressions that don't need it.

template<typename Derived, typename OtherDerived,
         bool MightHaveTransposeAliasing
                 = check_transpose_aliasing_compile_time_selector
                     <blas_traits<Derived>::IsTransposed,OtherDerived>::ret
        >
struct checkTransposeAliasing_impl
{
    static void run(const Derived& dst, const OtherDerived& other)
    {
        eigen_assert((!check_transpose_aliasing_run_time_selector
                      <typename Derived::Scalar,blas_traits<Derived>::IsTransposed,OtherDerived>
                      ::run(extract_data(dst), other))
          && "aliasing detected during tranposition, use transposeInPlace() "
             "or evaluate the rhs into a temporary using .eval()");

    }
};

template<typename Derived, typename OtherDerived>
struct checkTransposeAliasing_impl<Derived, OtherDerived, false>
{
    static void run(const Derived&, const OtherDerived&)
    {
    }
};

} // end namespace internal

template<typename Derived>
template<typename OtherDerived>
void DenseBase<Derived>::checkTransposeAliasing(const OtherDerived& other) const
{
    internal::checkTransposeAliasing_impl<Derived, OtherDerived>::run(derived(), other);
}
#endif

#endif // EIGEN_TRANSPOSE_H